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Explore and Discuss 1

SECTION 2.5 Exponential Functions 99

value of expression (1) approaches an irrational number that we call e. The irrational
number e to 12 decimal places is

e = 2.718 281 828 459

Compare this value of e with the value of ¢! from a calculator.

DEFINITION  Exponential Function with Base e
Exponential function with base ¢ and base 1 /e, respectively, are defined by

y=¢ and y=e"

Domain: (—=, =)
Range: (0, =)

Graph the functions f(x) = ¢*, g(x) = 2%, and h(x) = 3" on the same set of
coordinate axes. At which values of x do the graphs intersect? For positive values of
x, which of the three graphs lies above the other two? Below the other two? How does

your answer change for negative values of x? * = 05 if x > 0, g(x) < f(x) < h(x); if
x<0,h(x) <flx) <gx :

Growth and Decay Applications

Functions of the form y = ce¥, where ¢ and k are constants and the independent
variable ¢ represents time, are often used to model population growth and radioactive
decay. Note that if # = 0, then y = c. So the constant ¢ represents the initial popula-
tion (or initial amount). The constant k is called the relative growth rate and has the
following interpretation: Suppose that y = ce” models the population growth of a
country, where y is the number of persons and ¢ is time in years. If the relative growth
rate is k = 0.02, then at any time #, the population is growing at a rate of 0.02y per-
sons (that is, 2% of the population) per year.

We say that population is growing continuously at relative growth rate k to

mean that the population y is §iven by the model y = ce¥.

m Exponential Growth  Cholera, an intestinal disease, is caused by
a cholera bacterium that multiplies exponentially. The number of bacteria grows
continuously at relative growth rate 1.386, that is,

N = Noel.386t
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N where N is the number of bacteria present after ¢ hours and N, is the number of bac-
teria present at the start (+ = 0). If we start with 25 bacteria, how many bacteria
(to the nearest unit) will be present:

(A) In 0.6 hour? (B) In 3.5 hours?
SOLUTION  Substituting N, = 25 into the preceding equation, we obtain

10,000

N = 25¢'38"  The graph is shown in Figure 4
(A) Solve for N when ¢ = 0.6:

0 — N = 25¢1386008)  jse a calculator

e —

Time (hours) = 57 bacteria

Figure 4 (B) Solve for N when ¢ = 3.5: |

N = 25¢!386(35) Use a calculator. ’
= 3,197 bacteria

Matched Problem 2) Refer to the exponential growth model for cholera in
Example 2. If we start with 55 bacteria, how many bacteria (to the nearest unit) will
be present

(A) In 0.85 hour? (B) In 7.25 hours? "

m Exponential Decay Cosmic-ray bombardment of the atmosphere \ |
produces neutrons, which in turn react with nitrogen to produce radioactive

carbon-14 (!*C). Radioactive '“C enters all living tissues through carbon dioxide, |
which is first absorbed by plants. As long as a plant or animal is alive, '*C is main-
tained in the living organism at a constant level. Once the organism dies, however, :
YC decays according to the equation

A = Aoe —-0.000124¢

where A is the amount present after  years and A is the amount present at time
r=0.
@ f 500 milligrams of '*C is present in a sample from a skull at the time of death,
how many milligrams will be present in the sample in 15,000 years? Compute
J\/\D the answer to two decimal places.
vy

(B) The half-life of *C is the time ¢ at which the amount present is one-half the

paf

i amount at time ¢ = 0. Use Figure 5 to estimate the half-life of 4C.
00 SOLUTION Substituting Ay = 500 in the decay equation, we have
g 200 A = 500e~ 2000124 560 the graph in Figure 5.
j_‘%o - (A) Solve for A when t = 15,000:
- 100 | A = 500~ 0000124(15,000) )56 4 caiculator |
; oy = 77.84 milligrams
0 Years e (B) Refer to Figure 5, and estimate the time ¢ at which the amount A has fallen to 250
milligrams: ¢ =~ 6,000 years. (Finding the intersection of y, = 500 0000124
Figure 5 and y, = 250 on a graphing calculator gives a better estimate: ¢ =~ 5,590 years.)

Matched Problem 3) Refer to the exponential decay model in Example 3. How
many milligrams of “C would have to be present at the beginning in order to have 25
milligrams present after 18,000 years? Compute the answer to the nearest milligram. |

If you buy a new car, it is likely to depreciate in value by several thousand dollars
during the first year you own it. You would expect the value of the car to decrease in

A
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each subsequent year, but not by as much as in the previous year. If you drive the car
long enough, its resale value will get close to zero. An exponential decay function
will often be a good model of depreciation; a linear or quadratic function would not
be suitable (why?). We can use exponential regression on a graphing calculator to
find the function of the form y = ab* that best fits a data set.

m Depreciation Table 2 gives the market value of a hybrid sedan
(in dollars) x years after its purchase. Find an exponential regression model of the
form y = ab" for this data set. Estimate the purchase price of the hybrid. Estimate
the value of the hybrid 10 years after its purchase. Round answers to the nearest dollar.

Table 2
X Value ($)
I 12,575
2 9,455
3 8,115
4 6,845
5 5.225
6 4,485

SOLUTION Enter the data into a graphing calculator (Fig. 6A) and find the
exponential regression equation (Fig. 6B). The estimated purchase price is y;(0) =
$14,910. The data set and the regression equation are graphed in Figure 6C. Using
TRACE, we see that the estimated value after 10 years is $1,959.

20000
K] Lz L2 E; E}{PR’eg VA=ANELD. 2031077 RNk B6
1 i2e7c | — u=g¥khtx
% EEE a=14918.2@31,1
g e b=.81&62948177 U
ML
___________ %,,‘_
L31= Rz e— Ll N
(A) B) (C)
Figure 6

Matched Problem 4 | Table 3 gives the market value of a midsize sedan (in
dollars) x years after its purchase. Find an exponential regression model of the form
y = ab”* for this data set. Estimate the purchase price of the sedan. Estimate the
value of the sedan 10 years after its purchase. Round answers to the nearest dollar.

Table 3
x Value ($)
| 23,125
2 19,050
3 15,625
4 11,875
5 9450
6 7,125

Compound Interest

The fee paid to use another’s money is called interest. It is usually computed as a
percent (called interest rate) of the principal over a given period of time. If, at the
end of a payment period, the interest due is reinvested at the same rate, then the
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interest earned as well as the principal will earn interest during the next payment
period. Interest paid on interest reinvested is called compound interest and may be
calculated using the following compound interest formula:

If a principal P (present value) is invested at an annual rate r (expressed as
a decimal) compounded m times a year, then the amount A (future value) in the
account at the end of ¢ years is given by

r mt
A= P(l + ;) Compound interest formula

For given r and m, the amount A is equal to the principal P multiplied by the expo-
nential function ¥, where b = (1 + r/m)™.

m Compound Growth If $1,000 is invested in an account paying : !
10% compounded monthly, how much will be in the account at the end of 10

years? Compute the answer to the nearest cent.
4 SOLUTION We use the compound interest formula as follows:
$10,000 #\mt
1| (11 W [ 1) L S m
10\(12)(10)
i = 1,000<1 + M) Use a calculator.
$5,000 |— e — ) 12
- S S R N |
SREP” dEEEE = $2,707.04 |
2 S il N 0 O The graph of |
> |
0 10 20 0.10\ 12 .

Figure 7 for 0 = t = 20 is shown in Figure 7.

Matched Problem 5] If you deposit $5,000 in an account paying 9% compounded |
daily, how much will you have in the account in 5 years? Compute the answer to
the nearest cent. I

Explore and Discuss 2 Suppose that $1,000 is deposited in a savings account at an annual rate of 5%. Guess
the amount in the account at the end of 1 year if interest is compounded (1) quarterly,
(2) monthly, (3) daily, (4) hourly. Use the compound interest formula to compute the
amounts at the end of 1 year to the nearest cent. Discuss the accuracy of your initial
guesses. 1. $1,050.95 2. $1,051.16 3. $1,051.27 4. $1,051.27

Explore and Discuss 2 suggests that if $1,000 were deposited in a savings
account at an annual interest rate of 5%, then the amount at the end of 1 year would
be less than $1,051.28, even if interest were compounded every minute or every sec-
ond. The limiting value, approximately $1,051.271096, is said to be the amount in
the account if interest were compounded continuously.

If a principal, P, is invested at an annual rate, r, and compounded continuously,
then the amount in the account at the end of ¢ years is given by

A = Pe"  Continuous compound interest formula

where the constant ¢ = 2.71828 is the base of the exponential function.

. " . \
m Continuous Compound Interest  If $1,000 is invested in an account
paying 10% compounded continuously, how much will be in the account at the end
of 10 years? Compute the answer to the nearest cent.
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SCOLUTION We use the continuous compound interest formula:
A = Pe'" = 10000110 = 1000e = $2,718.28
Compare with the answer to Example 5.
Matched Problem 6 | If you deposit $5,000 in an account paying 9% compounded

continuously, how much will you have in the account in 5 years? Compute the
answer to the nearest cent.

—_—

The formulas for compound interest and continuous compound interest are summa-
rized below for convenient reference.

SUMMARY

r nif
Compound Interest: A = P(l + m>

Continuous Compound Interest: A = Pe"

where A = amount (future value) at the end of ¢ years
P = principal (present value)
r = annual rate (expressed as a decimal)
m = number of compounding periods per year

t = time in years

|

A 1. Match each equation with the graph of £, g, A, or k in the figure. Graph each function in Problems 3—10 over the indicated interval.
| (A y=2" & (B) y = (02)" ¢ 3.y=155[-22]* 4. y=135[-33]*
© y=4 »n ®y=(3)" 7 S.y=(5)"=5%[-22]*% 6.y=(3)"=3"%[-33]*
. 7. flx) = =55 [-2,2] * 8. g(x) = —-375[-3,3]*
— 9. y=—¢%[-3,3]* 10. y = —¢5[—3,3] *

B In Problems 11-18, describe verbally the transformations that can be
) used to obtain the graph of g from the graph of f (see Section 2.2).

1. | 7 i 11 g(x) = =25 f(x) = 2° %
. .- |___,$>\L__’_ | - 12, g(x) = 2772 f(x) = 2**
| FITTTITTT8 B ol = B ) e
2. Match each equation with the graph of f, g, &, or k in the figure. 14. g(x) = =35 flx) = 3%
@ y=(3)" ¢ (B) y = (05)* 1 15. g(x) =&+ 1; f(x) = & *
Da=S & @) y=3" 16. g(x) = & — 2 f(x) = & *

17. g(x) = 2" 02, fx) = ¢+ *
I 18. g(x) = 0.5¢ 71 fx) = %%

19. Use the graph of f shown in the figure to sketch the graph of
each of the following.

A y=flx) — 1% B) y=flx+2)*
©) y=73f(x) — 2% D)y y=2—-flx—-3)*

Answer located in Additional Instructor’s Answers section.

y
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Exponential Logarithmic
Function Function

x y=2* x=2 y

oo DN — = = u—
o0 ot — = = X

Ordered
pairs
reversed

In general, since the graphs of all exponential functions of the form flx) =V,
b # 1,b > 0, are either increasing or decreasing, exponential functions have inverses.

DEFINITION  Logarithmic Functions
The inverse of an exponential function is called a logarithmic function. For
b >0and b # 1,

Logarithmic form Exponential form

y = log,x is equivalent to x =5

The log to the base b of x is the exponent to which b must be raised to obtain x.
[Remember: A logarithm is an exponent.] The domain of the logarithmic function
is the set of all positive real numbers, which is also the range of the correspond-
irig exponential function; and the range of the logarithmic function is the set of all
Figure 3 real numbers, which is also the domain of the corresponding exponential function.
Typical graphs of an exponential function and its inverse, a logarithmic function,
are shown in Figure 3.

CONCEPTUAL INSIGHT

Because the domain of a logarithmic function consists of the positive real numbers,
the entire graph of a logarithmic function lies to the right of the y axis. In contrast, the
graphs of polynomial and exponential functions intersect every vertical line, and the
graphs of rational functions intersect all but a finite number of vertical lines.

The following examples involve converting logarithmic forms to equivalent
exponential forms, and vice versa.

m Logarithmic-Exponential Conversions Change each logarithmic '

form to an equivalent exponential form: _
(A) logs25 = 2 (B) loge3 = % © logg(ﬁ) = -2 |
SOLUTION i
(A) logs25 = 2 is equivalent to 25 = 52 .
(B) logg3 = % is equivalent to 3 =912 |
© logz(%) = -2 is equivalent to 1=272
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Matched Problem 1) Change each logarithmic form to an equivalent exponential
form:

(A) logs9 =2 (B) logs2 = 3 (©) logs(5) = —2 /

m Exponential-Logarithmic Conversions Change each exponential |
form to an equivalent logarithmic form:

(A) 64 = 4° (B) 6 = V36 © L=27

SOLUTION

(A) 64 = 43 is equivalent to log, 64 =3

B) 6 = V36 is equivalent to logy 6 = %

© % = P is equivalent to logz(é) = -3

Matched Problem 2 ] Change each exponential form to an equivalent logarithmic
form:

(A) 49 = 72 ®) 3 =19 ©5=3" __J

To gain a deeper understanding of logarithmic functions and their relationship to
exponential functions, we consider a few problems where we want to find x, b, or y
in y = log, x, given the other two values. All values are chosen so that the problems
can be solved exactly without a calculator.

m Solutions of the Equation y = logy, x Find y, b, or x, as indicated. )

(A) Findy: y = log, 16 (B) Findx: logy,x = =3
(C) Find b:  log, 100 = 2
SOLUTION
(A) y = log4 16 is equivalent to 16 = 47, So,
y=2
(B) log, x = —3is equivalent to x = 27°. So,
11
=573

(C) log, 100 = 2 is equivalent to 100 = »*. So,
b = 10 Recall that b cannot be negative.
Matched Problem 3 | Find y, b, or x, as indicated.

(A) Findy: y = logg 27 (B) Findx: logzx = —1
(C) Find b: log, 1,000 = 3 —

Properties of Logarithmic Functions

The properties of exponential functions (Section 2.5) lead to properties of loga-
rithmic functions. For example, consider the exponential property ¥% = b**”. Let
M= b, N = V. Then

log, MN = log,(b"'P’) = log,b**’ = x + y = log, M + log, N

So log, MN = log, M + log, N, that is, the logarithm of a product is the sum of the
logarithms. Similarly, the logarithm of a quotient is the difference of the logarithms.
These properties are among the eight useful properties of logarithms that are listed in
Theorem 1.
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THEOREM 1 Properties of Logarithmic Functions
If b, M, and N are positive real numbers, b # |, and p and x are real numbers, then

1. log, 1 =0 5. log, MN = log, M + log, N
M
2. log, b =1 6. log,,ﬁ = log, M — log, N
3. log, b" = x 7. log, M* = plog, M
4. P2 =yx x>0 8. log, M = log, Nifandonly if M = N

m Using Logarithmic Properties

= logb wx — iog,,yz S

' = log, w + log,x — (log,y + log, z)
= log, w + log, x — log,y — log, z

wx
A)l —
(A) log, o

(B) logb(wx)3/5 = %logl7 wWx = %(logbw + log, x)
(©) glog.b = log. b — p

log, x _ log, (6°%*) _ (log, x) (log, b)
log, b B log, b log, b

= log, x

D)

Matched Problem 4 ) Write in simpler forms, as in Example 4.

log, x
log, b

R R 2/3
(A) logy - (B) 1ogb(§> (C) 24loeb (D)

The following examples and problems will give you additional practice in using basic
logarithmic properties.

m Solving Logarithmic Equations Find x so that

%logb4 - %logl7 8 + log, 2 = log, x

SOLUTION 3log, 4 — 2log,8 + log, 2 = log, x
log, 437 — logl,82/3 + log, 2 = log, x  Property 7
log, 8 — log, 4 + log, 2 = log, x
8+2
log,, e = log, x Properties 5 and 6

log, 4 = log, x
x=4 Property 8

Matched Problem 5) Find x so that 3 log, 2 + %log,J 25 — log, 20 = logyx.

m Solving Logarithmic Equations

Solve: log g x + logo(x + 1) =logyo 6.
SOLUTION logox + logjo(x + 1) = logp 6
logo [x(x + 1)] = log;p6 Property 5
x(x+1)=6 Property 8
P4+x—-6=0 Solve by factoring.
(x +3)(x—2)=0
x= =32

roropmaill
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We must exclude x = —3, since the domain of the function logo(x + 1) is
x> —lor(—1,%);s0x = 2is the only solution.

Matched Problem 6 | Solve: logy x + logs(x — 3) = logs 10.

Calculator Evaluation of Logarithms

Of all possible logarithmic bases, ¢ and 10 are used almost exclusively. Before we
can use logarithms in certain practical problems, we need to be able to approximate
the logarithm of any positive number either to base 10 or to base e. And conversely,
if we are given the logarithm of a number to base 10 or base e, we need to be able
to approximate the number. Historically, tables were used for this purpose, but now
calculators make computations faster and far more accurate.

Common logarithms are logarithms with base 10. Natural logarithms are log-
arithms with base e. Most calculators have a key labeled “log” (or “LOG”) and a key
labeled “In” (or “LN”). The former represents a common (base 10) logarithm and the
latter a natural (base e) logarithm. In fact, “log” and “In” are both used extensively in
mathematical literature, and whenever you see either used in this book without a base
indicated, they will be interpreted as follows:

Common logarithm: log x means logo x
Natural logarithm: In x means log, x

Finding the common or natural logarithm using a calculator is very easy. On
some calculators, you simply enter a number from the domain of the function and
press [LoG] or [L¥] On other calculators, you press either [LOG] or [LN], enter a number

ol A Colculator Evaluation of Logarithms Use a calculator to evaluate
each to six decimal places:

(A) log 3,184 (B) In 0.000 349 (C) log(—3.24)
SOLUTION

(A) log 3,184 = 3.502 973

(B) In 0.000 349 = —7.960 439

(C) log (—3.24) = Error* —3.24is not in the domain of the log function.

Matched Problem 7 | Use a calculator to evaluate each to six decimal places:
(A) log 0.013 529 (B) 1n 28.693 28 (C) In (—0.438) P—

Given the logarithm of a number, how do you find the number? We make direct use
of the logarithmic-exponential relationships, which follow from the definition of
logarithmic function given at the beginning of this section.

logx = y isequivalentto x = 10’

Inx =y isequivalentto x = ¢

. ] . 2!
EXAMPLE 8 Solving log, x = y for x Find x to four decimal places, given the
indicated logarithm:

(A) logx = —2.315 (B) Inx = 2.386
SOLUTION
(A) log x = —2.315 Change to equivalent exponential form,

x = 107%*  Evaluate with a calculator

= 0.0048

*Some calculators use a more advanced definition of logarithms involving complex numbers and will
display an ordered pair of real numbers as the value of log (—3.24). You should interpret such a result as
an indication that the number entered is not in the domain of the logarithm function as we have defined it.
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(B) Inx = 2.386 Change to equivalent exponential form

62.38§

X = Evaluate with a calculator.

= 10.8699

Matched Problem 8/ Find x to four decimal places, given the indicated logarithm:
(A) Inx = —5.062 (B) logx = 2.0821 p.

We can use logarithms to solve exponential equations.

m Solving Exponential Equations  Solve for x to four decimal places:\

(A)10F=2 B)e&=3 C)3*=14
SOLUTION
(A) 100 =2 Take common logarithms of both sides.

log 10° = log 2 Property 3
x = log2 Use a calculator.

= 0.3010 To four decimal places

(B) e =3 Take natural logarithms of both sides.
Ine* =1n3 Property 3
x=1In3 Use a calculator.

= 1.0986 To four decimal places

(@) =4 Take either natural or common logarithms of both sides,
(We choose common logarithms.)

log3* = log4  Property 7
xlog3 =log4  Solvefor x.
_ log4

Use a calculator

log 3
= 1.2619 To four decimal places

Matched Problem 9 ) Solve for x to four decimal places:
A) 108 =7 (B) ¢ =6 C) 4 = N

A Exponential equations can also be solved graphically by graphing both sides of
an equation and finding the points of intersection. Figure 4 illustrates this approach
for the equations in Example 9.

5 S 5
r ' i
/ 5
/ L 4
2 o 2 -2 t 2 =2 4 2
y -~ L=
~ ] _
Irbersection intersection Infersection [
hiied 5 (] ¥=2 W=l 088a1z% |¥=32 W=1.261B58E Y=y
1 1 —1
(A) y, = 10" (B) yy =€ ©) y =3
=2 ¥, =3 Yy =4

Figure 4 Graphical solution of exponential equations
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Explore and Discuss 2 Discuss how you could find y = logs38.25 using either natural or common loga-

rithms on a calculator. [Hinz: Start by rewriting the equation in exponential form.]
Find the intersection of y; = 5% and y, = 38.25.

Remark—In the usual notation for natural logarithms, the simplifications of Example 4,
poarts {C) and (D) on page 110, become

ghb = b and Ly o logy, x
In b

With these formulas, we can change an exponential function with base b, or a logarithmic

function with base b, fo expressions involving exponential or logarithmic functions,
respectively, to the base e. Such change-of-base formulas are useful in calculus.

Applications

A convenient and easily understood way of comparing different investments is to
use their doubling times—the length of time it takes the value of an investment to
double. Logarithm properties, as you will see in Example 10, provide us with just the
right tool for solving some doubling-time problems.

m Doubling Time for an Investment How long (to the next Whole\\

year) will it take money to double if it is invested at 20% compounded annually?

SOLUTION We use the compound interest formula discussed in Section 2.5:
r mt
A= P<1 + E) Compound interest

The problem is to find 7, given r = 0.20, m = 1, and A = 2p; that is,
2P = P(1 + 02)

2 =12 Solve for t by taking the natural or
128=2 common logarithm of both sides (we choose
nl2 =1n?2 the natural logarithm)
tln12 =In2 Property 7
In2
t = Use a calculator
In 1.2
= 3.8 years [Note: (In2)/(In1.2) # In2 — In1.2]
=~ 4 years To the next whole year

When interest is paid at the end of 3 years, the money will not be doubled; when paid
at the end of 4 years, the money will be slightly more than doubled.

2 = 1.2, and finding the intersection point (Fig. 5).

|

|

: I35 Example 10 can also be solved graphically by graphing both sides of the equation
) 4

|

Intepsetion
aeire

ot (15 g o Ny o —)

0

Figure 5 y1=1.2%, yp=2

Matched Problem 10) How long (to the next whole year) will it take money to triple if it is
invested at 13% compounded annually? —




