Reject H_0 Reject H_0 Reject H_0 Critical $\mu = 22$ Critical $\mu = 22.015$ value of \overline{x} (H_0) value of \overline{x} (H_a) **FIGURE 6.19** The two error probabilities for Example 6.32. The probability of a Type I error (yellow area) is the probability of rejecting H_0 : $\mu=22$ when in fact $\mu=22$. The probability of a Type II error (blue area) is the probability of accepting H_0 when in fact $\mu=22.015$. ## **TYPE I AND TYPE II ERRORS** If we reject H_0 (accept H_a) when in fact H_0 is true, this is a **Type I error**. If we accept H_0 (reject H_a) when in fact H_a is true, this is a **Type II error**. Truth about the population | | 2.0 | H_0 true | H_a true | |--------------------------------|-----------------------|---------------------|---------------------| | Decision
based on
sample | Reject H ₀ | Type I
error | Correct
decision | | | Accept H_0 | Correct
decision | Type II
error | FIGURE 6.17 The two types of error in testing hypotheses. Truth about the lot | | | Does meet
standards | Does not
meet standards | |--------------------------------|-------------------|------------------------|----------------------------| | Decision
based on
sample | Reject
the lot | Type I
error | Correct
decision | | | Accept
the lot | Correct
decision | Type II
error | **FIGURE 6.18** The two types of error in the acceptance sampling setting. ## **POWER AND TYPE II ERROR** The power of a fixed level test to detect a particular alternative is 1 minus the probability of a Type II error for that alternative. ## SIGNIFICANCE AND TYPE I ERROR The significance level α of any fixed level test is the probability of a Type I error. That is, α is the probability that the test will reject the null hypothesis H_0 when H_0 is in fact true. ## **POWER** The probability that a fixed level α significance test will reject H_0 when a particular alternative value of the parameter is true is called the **power** of the test to detect that alternative. **FIGURE 6.15** The sampling distributions of \overline{x} when $\mu=0$ and when $\mu=1$. The power is the probability that the test rejects H_0 when the alternative is true. **FIGURE 6.16** The power for Example 6.30. Unlike Figure 6.15, only the sampling distribution under the alterntive is shown.