Model-Based Hypothesis Testing (with System ID) for Neural Systems

Sean Carver, Ph. D. The Johns Hopkins University

Systems I Have Studied

Human

- Sensory reweighting in posture control
- Stabilizing running
- Weakly Electric Fish
 - Direction selectivity in electro-sensation

OUTLINE

- Introduction to system identification
- Research problems for an undergraduate class
- Application to diagnosis of balance deficits
- Previous work
- Research goals

Analogy: Flying a Plane

Like balance, flying is a sensorimotor stabilization task.

Modeling Approach

Use a flight simulator with an autopilot that mimics the brain of a real pilot.

Model Complexity Varies

-

Autopilot behaving human ... trivializes variability in pilot population

Good model

For each pilot, want to know states of knobs and switches.

Need #1: Simple Behavior

Yes!

No!

"Need" #2: Input

Balance: Move platform & visual surround

Flight: Change the wind

Need #3: Data

Balance:

Flight:

Need #4: Parameterized Model

Flight:

Balance:

Need #5: Statistics of Noise

Noise is any input you do not know.

Needs

- I. Simple Behavior to Be Studied
- 2. Known Inputs to System During Behavior
- 3. Data Collected During Behavior
- 4. Parameterized Model of System ...
- 5. Including Statistics of Noise (Unknown inputs)

System Identification: Infers the Values of Parameters (Knobs & Switches) and/or Decides If the Model Fits the Data

System ID Terminology

- Infer Position of Knobs: Parameter Estimation
- Infer Position of Switches: Model Selection
- Decide if Model Fits Data: Model Validation

Parameter Estimation

K+ Maximal Conductance mS/cm^2

Objective Function Quantifying How Well Model Fits Data (As Two Knobs Vary)

Hidden Variables Confound Likelihood Computation

Versus

Infer Hidden Variables With Bayesian Filtering

Prediction Step:

Start with an initial PDF for the hidden variables

Put it through the first time step of the model Get a new PDF for hidden variables at next time

Infer Hidden Variables With Bayesian Filtering

Update Step

Combine the prior PDF (from last step) ...

... with whatever information you get from the measurement

Mathematical Model of The System

The model is written as a discrete mapping between the times when data is collected.

 $x_k = a(x_{k-1}, i_{k-1}, q_{k-1}, p)$ State Equation $y_k = h(x_k, i_k, r_k, p)$ Measurement Equation

 $\{y_k\}$ models the data collected.

Bayesian Filtering

 $Y_k = \{y_i, i = 1, \dots, k\}$ First k measurements $Y_0 = \{\}$ No measurements $p(x_k|x_{k-1})$ Transition density (partly from function a) $p(y_k|x_k)$ Measurement density (partly from function h) Prediction (Chapman-Kolmogorov Equation): $p(x_k|Y_{k-1}) = \int p(x_k|x_{k-1})p(x_{k-1}|Y_{k-1})dx_{k-1}$ Update (Bayes Rule, Simplified by the Markov Property): $p(x_k|Y_k) = \frac{p(y_k|x_k)p(x_k|Y_{k-1})}{p(y_k|Y_{k-1})}$

The Denominator in The Update Step

$$p(y_k|Y_{k-1}) = \int p(y_k|x_k) p(x_k|Y_{k-1}) dx_k$$

Called the "Marginal Measurement Likelihood"

The LIKELIHOOD of interest is the product of all marginal measurement likelihoods.

Log-likelihood computed as a sum then optimized.

Performing Bayesian Filtering

- If the functions a and h are linear and the noise is Gaussian, use a KALMAN FILTER.
- If the state space of x is finite, use a HIDDEN MARKOV MODEL.
- For general nonlinear a and h, use one of SEVERAL KNOWN APPROXIMATIONS.

Approximate Methods For Nonlinear Filtering

- Extended Kalman Filter: Linearize a and h around the means of the distributions.
- Unscented Kalman Filter: Similar except uses a "secant" rather than "tangent" approximation.
- Particle Filters: Use Monte Carlo Simulations to evaluate the Bayesian filtering integrals.
- Fancier methods, e.g. treat parameters as state variables.

Research Problems Planned For An Undergraduate Class

- Would Bayesian filtering have allowed Hodgkin & Huxley to understand the action potential without a voltage clamp?
- When is Bayesian filtering helpful for detecting ionic currents in single cells?
- When is Bayesian filtering helpful for detecting backpropagation from a somatic voltage trace in the "Ghostburster," a two compartment model cell exhibiting chaos?

Diagnosis of Balance Deficits

Important problem impacting many lives

What Can Go Wrong With Balance?

Sensory Central Motor

Patient populations are heterogeneous!

Want Clinical Data

Useful for designing interventions and monitoring progress

computer-generated visual display

estimated center-of-mass

> servo-motor-controlled touch surface

Carver et al, 2005 Jeka, Carver, et al 2005 Carver et al, 2006 Jeka, Carver et al, 2006

Under common hypotheses, N cancels dynamics of H.

Carver et al., Biological Cybernetics, Submitted.

Testing The Hypothesis

Avoiding the Cancellation

Under common hypotheses, N cancels dynamics of H.

So measure and/or perturb between H and N.

Enter Weakly Electric Fish

One Simple Behavior

Experimental Apparatus

Cowan & Fortune, J.Neurosci., 2007

Neurophysiology

Direction Selectivity

Video

Hubel & Wiesel ca. 1950

Many Neurons in the Electric Fish Torus Semicircularis are Directionally Selective

Direction Selectivity Hypothesis (Chance et al.)

Carver et al., PLoS Computational Biology, 2008.

Turning Knobs To Reproduce Population

Carver et al., PLoS Computational Biology, 2008.

Prey Capture:

Courtesy Malcolm Maclver Northwestern University

Jamming Avoidance

Research Goals

- Develop theory (guided by numerical experiments) to understand the usefulness of system ID to science.
- Develop software tools useful to scientists.
- Apply system ID to understand the mechanisms of sensorimotor processing in weakly electric fish ... leading to testable hypotheses in humans and tools that benefit the clinic.

Thank You!!

Easton, Meiss, Carver. Chaos, 1993

Software Project Plan

- Button in NEURON: You give data sampling frequency (i.e. 100 Hz) and name (i.e. 'foo'); it produces C++ code:
 - foo_a.c & foo_h.c, which when compiled produces discrete map.
- Modular programs: Objective functions and optimization routines, automatic differentiation.
- Graphical User Interfaces