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Dedicated to my students.





Introduction

You hold in your hand a draft of several chapters of a textbook that I
have started writing to use in a Basic Statistics class that I periodically
teach at American University. The book will be more than just a
textbook. In addition, it will simultaneously serve as lecture notes,
and a workbook. My lectures will follow this book very closely,
and students will follow with their copies of the text during class.
Observe the large margins for adding notes. Much of the material
will be written in bullet points, and, together with figures, the text
might resemble a printout of a PowerPoint presentation, only much
better. In the text, I will pose questions to the reader that I will also
pose to, and discuss with, the class. I will include materials for active
learning exercises, planned for the class. I will provide blank space
for answering questions and completing activities. The book will
include homework problems, and a companion website will provide
data.

Some homework problems in the text will have answers included
in the text. My teaching philosophy inclines me to assign problems
from this set, although other instructors using the text could make
other decisions. However, I plan to make many problems without
answers have corresponding similar problems with answers, and
identified as such in the text. Finally, I will include problems not
guided in this way, for teachers who want to assign them, and stu-
dents who want to wrestle with a challenge.

My ideas for this book present a huge undertaking, but hopefully
I will not work alone. I plan to release all source files for this book
on GitHub, available for free download by students and teachers
alike. GitHub is a cloud based service for hosting Git repositories.
Git is an extremely sophisticated version control software, created
to coordinate the activities of thousands of developers working on
the Linux kernel. Git will facilitate the maintenance of a virtually
unlimited number of versions of this textbook. Instructors can easily
change the book to suit their needs, even changing it again for dif-
ferent sections of the of the same, or different classes. Contributors
can share these changes back to the central repository, or not, either
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as separate branches, or merged with other versions in a myriad of
different ways.

I plan to make this book available to students, instructors, and
contributors under an open-access, attribution, share-alike license,
where contributors keep their copyrights to their contributions, but
must provide access to their work under a compatible license. I hope
to encourage many to contribute material to this endeavor and make
this text truly outstanding.

[Aside: Until I have a chance read through and understand all
the legal ramifications behind my choice of license, this printing is
offered with “all rights reserved.” Additionally, the source is still
maintained under a private Git repository. I expect all of this to
change in the coming weeks.]

I plan to also write a guidebook intended to be used and read by
collaborators of this project. The software tools I plan to use to write
this document have substantial learning curves, all of which merit the
allocation of my time and energy to help my would-be collaborators
surpass. Additionally, the guidebook will draw from, and cite, the
GAISE report (Guidelines for Assessment and Instruction in Statistics
Education), and maybe other sources, as valuable references. Of
course, the guidebook, itself, will be a collaborative document, just
like this one. Finally, for both of these projects, I plan to make use
of the wiki and issue tracker that come standard with a repository
hosted on GitHub.

One final issue has to do with the statistical software I will use to
present the graphs and results of computations in this textbook. At
American University many instructors use StatCrunch. StatCrunch
is an effective pedagogical tool that proves easy, even trivial, for
many students to learn. StatCrunch can be accessed and used with a
browser (and used for free with American University credentials).

All that said, I do not plan to use StatCrunch at all for this text-
book. I will use R, exclusively. The text will only show graphs and
results generated with R. Nevertheless, for now, the lectures will still
involve StatCrunch. In other words, while discussing the R figures
and results in the text, I will, during class, teach students how to
generate similar graphs and results with StatCrunch, if at all possible.
(Much of what one can do in R remains impossible in StatCrunch.)
During class, students will take notes and try StatCrunch out on their
laptops. Students interested in R can read the behind the scenes adden-
dum to each relevant chapter, which will explain how to generate,
with R, all of the actual graphs and results shown. These optional ad-
denda, not discussed in class, will give interested students a complete
course on R. Class projects may motivate students to use R to exceed
the capabilities of StatCrunch.
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During exams, given in a computer lab, students will have both
R and StatCrunch available for them to use to complete their exam
problems. For these tests, I will provide a crib sheet, available ahead
of time, and/or at the end of this book, listing the R commands
presented in the R addenda. The commands on the crib sheet will
include all the commands needed to solve the exam problems given
to the class.

Here are the advantages of this R approach:

1. Although learning StatCrunch may provide skills transferable to
learning other statistical software, by itself, StatCrunch is useless
in the real world. No employer, to my knowledge, desires can-
didates with StatCrunch skills. Many want R skills. We should
oblige Basic Statistics students who want to learn something more
sophisticated, even if we do not require it at this level.

2. Although the main curriculum for Basic Statistics at American
University does not require use of anything beyond StatCrunch,
many students exceed its capabilities with projects assigned in the
class.

3. Guiding students through the menu-based (GUI) StatCrunch can
be difficult in a textbook. Command-line based R is much better
suited for explaining what to do.

4. R is free for everyone, whereas StatCrunch may not be free outside
of the American University community. I am looking far and
wide for users of and contributors to this textbook. Open source
software becomes an imperative for this endeavor.

5. The real kicker for me (which elevates R above both StatCrunch
and all its other alternatives): R has sophisticated tools for author-
ing books. I can embed R code into the LATEX files that comprise
the source for this book. Compiling the document will run the R
code that will create the results, tables and figures, and embed
these results into the document. Additionally, the corresponding
code (the actual code that was used to generate the results) can be
automatically embedded into a different part of the document (e.g.
the behind the scenes addendum). On top of all that, these tools
facilitate version control, not just on the text, but also, on every-
thing else involved including the results, tables, figures, and code.
Collaborative authoring without these tools would be a nightmare.





Defining familiar terms

We are going to start with a game. I will give you a familiar word,
and you will try to articulate a precise definition. Don’t look ahead:
I do give answers on subsequent pages, but the purpose of this
exercise is to help you remember the definitions I use. The effort of
trying to formulate your own definitions should help you remember
mine. This game will be hard to play, so let yourself be pushed
beyond your comfort zone.

In the box below, jot down your ideas or those discussed in class.
When we are done playing the game, we will find out what the
American Statistical Association has to say about this matter.

What does the word “statistics” mean?
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So, what does statistics mean? On their website, the American
Statistical Association (ASA) provides the following definition and a
citation1: “statistics is the science of learning from data...” 1

6. The ASA classifies statistics as a science, not as a type of mathe-
matics, although everyone agrees that statistics draws heavily on
mathematics—as do many other sciences.

7. Specifically, statistics is the science of learning from data.

8. What about data? Round two.

What does the word “data” mean?
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So what does the word data mean?
Data are descriptions of objects, people, or events under study.

9. Let’s unpack this definition. It has three parts. First, data are
descriptions. And second, data are descriptions of things under study.
And third, these things are always objects, people or events.

10. The word data is plural; its singular form is datum. Be careful with
subject-verb agreement. The data is compelling (incorrect). The data
are compelling (correct).

11. Examples of data: heights, weights and ages of varsity student
athletes at a university. These are all numbers describing athletes.

12. More examples for the athletes: their gender (female, male) and
the team (e.g. basketball, lacrosse, swimming, etc.) that they play
for. These are both categories describing athletes.

13. Can you think of other examples of data that are numbers?

14. Can you think of other examples of data that are categories?

15. Most statistics involve data of one of two kinds: numbers and
categories. Different statistical methods apply to different kinds of
data. We will study methods for both of these kinds.

16. Another kind of data is raw data, described below.

17. Raw data are data that require processing before statistical analyses
can be performed.

18. Raw data might be numbers or categories, but often they might
best be described as something else. See examples, below.

19. Examples: Images, audio and video are raw data that are not
best described as numbers or categories. Individual pixels can be
described by numbers, but usually individual pixels are not, by
themselves, useful to statisticians.

20. Example: your raw data consists of videos of the courtship rituals
of songbirds. By watching the videos, you derive a number (length
of song in seconds) and a category (success or failure to mate) to
describe the courtship event.

21. We will only work with numbers and categories in this class.





Let’s collect some data!

What is your favorite color? I’ll count the number of people in the
class for each color. Record the results below. We will use it later.

color (blanks for other) number
red

orange
yellow
green
blue

purple
white
gray
black

brown





Concepts of structured data

22. Computers always store data (numbers, categories, or raw) as
patterns of bits. Almost all statistics involve computers these days,
but can you think of different ways to store data, not as a patterns
of bits?

23. Data can be structured or unstructured. I explain the distinction
below.

24. Structured data can be naturally stored in a spreadsheet, using one
or more tables (also called sheets)

25. Recall: a table of a spreadsheet is a two-dimensional structure with
rows and columns. Structured data has this format.

26. An example of structured data: the records of varsity student
athletes, mentioned above. Traditionally, each player gets a row
and each characteristic gets a column. Thus, there are columns for
height, weight, age, gender, and team.

27. Can you think of more examples of structured data?

28. Unstructured data cannot be naturally stored in a spreadsheet.

29. An example of unstructured data: the archive of data from twitter
including its author, text, hash tags, mentions and places.

30. Can you think of more examples of unstructured data?

31. In this class, we are only going to consider structured data.

32. A case is a single object, person or event described by the data.

33. Remember: we defined data as “descriptions of objects, people,
or events under study,” so the cases are those objects, people, or
events.

34. Examples of cases: lots of a drug being manufactured, patients
under care of a hospital, or stock trades made by a firm.

35. What were the cases in the student athlete data example?
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36. A variable is a characteristic of a case, recorded in the data.

37. Variables could be dosage of the drug, age and diagnosis of pa-
tient, and company, price, and date of trade of stock.

38. What were the variables of the student athlete example?

39. Traditionally, rows hold cases, whereas columns hold variables.

40. The values make up the individual entries in the table.

41. We say that a variable has a value for a case.

42. If the cases are people, we often call them subjects.

43. If a data set contains more than one table, each table could refer to
different cases.

44. For example: Amazon.com might have a table for all its customers,
a table for all its products, and a table for all its customers’ orders.

45. In the Amazon.com example, relationships exist among the data
from different tables: certain customers place certain orders for
certain products. You would use a relational database to manage
these issues.

46. We will not deal with these complexities in this class. All our data
will fit onto a single table.
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47. What are the cases in our favorite color data set? What is (or are)
the variable(s)?

What are the cases in the favorite color data set?

What are the variables in the favorite color data set?
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48. So what are the cases of the favorite color data set? It is tricky to
answer this question because what often comes to mind first, while
not being wrong, is not really the best answer. Many people say
the cases in the favorite color data set are the colors, and variable
(only one) is the number of people in our class who have that color
as their favorite. This answer is suggested by the structure of the
data we collected.

49. But are we really studying colors? What are we studying? That’s
the best answer for what are the cases!

What objects, people, or events are under study in the favorite color data set?
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50. So what are we studying in the favorite color data set? I think the
best answer is that we are studying the students in our class. This
answer suggests that the students in our class comprise the cases
for this data set.

51. But what about the variables? And what about the structure of the
data?

52. Could we rewrite the table so that each student has their own row?

53. Look below, the two tables hold the same data, although the
second also has students’ names, which were not recorded in the
previous data set.

white 2

gray 3

black 1

brown 0

sally white
john white
zoe gray
ivan gray

charlotte gray
jane black

Technically, the first data set is a summary of the second. The
concept will be important, later.

54. The second way makes clear that the cases are the students and the
variables are the student’s favorite color and the student’s name.

55. Note that we did not need to add the names: our new data set
could have been just one column of colors, with some colors
repeating.

56. But if the new variable was not there, could you understand the
data as easily?

57. The new name variable involves data that we did not record in our
original (summary) data set.

58. The student name variable exemplifies the concept of a label, de-
fined below.

59. A label is a variable that distinguishes or identifies the cases.
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60. To be a label, it must hold a unique value for each case, otherwise
it would not distinguish or identify the cases. But see complication,
below.

61. Complication: sometimes data sets use more than one variable as a
label. See example below.

62. For example, we might need both the first name and the last name
to distinguish or identify the students (if names repeat).

63. What other options would we have?



Kinds of variables

64. Quantitative variables hold numbers whereas categorical variables
hold categories—the only types of variables we will consider in
this class.

65. What about labels? While not terribly useful, we can think of
labels as categorical variables. If the data set uses just one label,
then each case has its own unique category under this variable.

66. I have heard some people say qualitative as a synonym for categori-
cal.

67. However, do not say numerical instead of quantitative: the two
terms refer to different concepts. Consider the next bullet point.

68. The data records “1” for male and “2” for female. (Things like this
happen all the time with real data).

69. The ones and twos are numbers, so the variable is numerical, but
is it quantitative and not categorical?

70. Best way to tell the difference: if you have a variable holding num-
bers, ask yourself, are arithmetic operations (especially adding and
averaging) meaningful for these numbers? If so, it is quantitative.
If not, it is probably categorical or raw.

71. On the other hand, if the variable places each case into one of two
or more categories, it is categorical.

72. It is usually very easy to tell the difference between a categorical
variable and a quantitative variable, but in some cases the variable
could be interpreted in either way. How?

73. Consider a different data set that records “0” for male and “1”
for female (and let’s say the cases are the people in our class).
Obviously this is still a categorical variable, but is there a way to
interpret the data as quantitative?

74. What if we interpret the variable (either 0 or 1) as the number of
females that the presence of the subject adds to the class.
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75. Interpreted as above, the variable is quantitative.

76. What is the sum of the values of this variable (0 for men and 1 for
women), for all cases in the data set (i.e. all students in this class)?

What is the sum of the values of this variable?

77. What about average?

What is the average of the values of this variable?
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78. What is the sum of the values of the variable across for all case?
The sums of the zeros and ones in the above example is the count
of the number of women in this class.

79. What is the average of the variable across this data set? The aver-
age of the zeros and ones in the above example is the proportion
of women in the class. If 60% of students in this class are women,
then this average is 0.6.

80. Both counts and proportions are very important in statistics. We
will see them both again later.

81. The example above applies to any categorical variable with only
two possible categories. Just assign 0 to one category, and 1 to the
other.

82. A binary categorical variable is a categorical variable with only two
possible variable categories.

83. The example, above, reveals a connection between statistics for bi-
nary categorical variables (involving counts and proportions) and
statistics for quantitative variables (involving sums and averages).
We will explore this connection, later.

84. There is another distinction between categorical variables: ordinal
categorical variables versus nominal categorical variables. I explain
the difference below.

85. Ordinal categorical variables are categorical variables with a natural
order.

86. For example, some surveys pose a statement to the respondent
then require a multiple choice answer: (1) Strongly Disagree (2)
Disagree (3) Agree (4) Strongly Agree. Can you see the order in
these categories?

87. Can you think of other ordinal categorical variables?

88. Nominal categorical variable are categorical variables that lack a
natural order and are related by name only. An example of this
kind of variable are the favorite colors that we collected above.

89. Can you think of other examples of nominal categorical variables?
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90. In many universities in the U.S. grade students with a “letter” (one
of A, A-, B+, B, B-, C+, C, C-, D, or F). What kind of variable is the
grades variable?

What kind of variable is the “grades” variable?
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91. So what kind of variable is the grades variable? I believe the best
answer that it is a ordinal categorical variable.

92. Why the hesitation? The situation is a little complicated by the fact
that there is a standard translation between grades and numbers:
an A is a 4.0; an A- is a 3.7, etc.

93. If the categories were expressed as numbers 4.0, 3.7, etc., would
the variable be quantitative?

94. Would summing or averaging the grade points make sense?

95. Consider this: one’s grade point numbers are frequently averaged
to form the much fretted over “grade point average” (GPA). That
clearly suggests the variable is quantitative.

96. Still people argue that the answer is no, the variable is not really
quantitative, because the numbering is arbitrary.

97. Consider the following question: is the difference between an A
and an A- really the same as the difference between a B and a B-?
(If you are unfamiliar with this scheme a B gets 3.0 points and B-
gets a 2.7, suggesting the differences should be the same).

98. Many students (and employers) would think the difference be-
tween an A and and A- is much smaller than between a B and a
B-.

99. Thus people have argued that, no, averaging the grade points to
create the GPA fundamentally does not make sense. It follows that
the grades variable is ordinal categorical.

100. But this position is open to interpretation. The question concern-
ing whether grades are quantitative or categorical really depends
on your perspective. Do you have an opinion? Do you agree or dis-
agree that the translation between letters and numbers is arbitrary,
in the sense explained above?





Distributions

101. The concept of a distribution is absolutely central in probability and
statistics.

102. In an advanced book, you will get a mathematical definition of a
distribution.

103. We have to settle for the following (which while imprecise, con-
veys the idea):

104. The distribution of a variable tells us (1) what values the variable
takes and (2) how often the variable takes these values.

105. The best way to visualize a distribution is with a graph.

106. The kinds of graphs we draw for categorical variables is different
from the kinds of graphs we draw for quantitative variables.

107. For categorical variables we draw pie charts and/or bar graphs.

108. For quantitative variables we draw stem plots and histograms.

109. Let’s graph the favorite color variable of our favorite color data set.

110. Let’s graph the categorical variables of the diamonds data set.

111. Homework 1.

112. Stem plots and homework 2.

113. Histograms and the call center data set.

114. Let’s graph (some of the) quantitative variables of the diamonds
data set.

115. Homework 3.





Exploratory data analysis

116. When you do exploratory data analysis you examine data to describe
its main features.

117. The key word in the above definition is describe. With exploratory
data analysis, our goal is simply a description of a data set’s main
features, not inference from the data.

118. Exploratory data analysis is generally the first thing you do with a
new data set.

119. If there are only a few variables, you can start by graphing the
distribution of each.

120. Single variables tell only a limited story. You also want to look at
relationships between and among variables.

121. The next level of complication is to look at relationships between
pairs of variables.

122. Of course you don’t have to stop there. You can look at relation-
ships among 3, 4, 5, or more variables. But with more than two
variables, things can get very complicated.

123. In this class, we will look at single variables and pairs of variables,
but no more.

124. For multiple variables, there is a generalization of the concept of
distribution for more than one variable. It is called joint distribu-
tion of two or more variables. More about that later...

125. After creating graphs to understand the variables, alone or in pairs,
the next step is to create numerical summaries of the data. We will
soon talk a lot about that.

126. If there happens to be many variables in the data set (some data
sets have thousands), graphing each one is impractical. And
graphing each pair of two is even worse.
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127. In that situation, look at the cases and variables. What cases do the
data describe? What characteristics of the cases do the variables
describe? You might graph the distribution of a few variables, but
ultimately what you want to do is formulate a question about the
data.

128. Formulating a question about the data is still a good thing to do
with small data sets, as well.

129. Once you have a question, you try to answer it.

130. Once you answer your question, you try to formulate another
question.

131. You repeat the process until you have gleaned some insight into
the data.

132. That’s all you can hope for. With a really big data set, with many
variables, it may not be possible to completely understand the
whole body of data.

133. The quality of your questions, and your success in answering
them, will determine the value of your work.

134. What questions can we formulate about the diamonds data set?



Mean

135. The mean is a statistic used for a single quantitative variable.

136. Thus, we can take the mean of a set of quantitative observations
like IQ, shoe size, height, weight, etc., but not a set of categorical
observations like gender, party affiliation, etc.

137. Test scores are quantitative. Let’s say we have the following test
scores (and everyone did really well): 90, 92, 94, 96, 98, 100. We
want to find the mean.

138. Most students are already familiar with the formula:

x̄ =
90 + 92 + 94 + 96 + 98 + 100

6
= 95.

139. Now we give each data point a number, called an index:

x1 = 90

x2 = 92
...

x6 = 100.

140. If we want to refer to an arbitrary data point we use the letter i. In
other words xi is the ith data point. Here i stands for a number,
either 1, 2, 3, 4, 5, or 6. The subscript i is called the index.

141. Finally, if we want to refer to the total number of data points
(in this case 6) we use the letter n. This use of n is common in
statistics.

142. We use the sigma notation to write the formula for the mean:

x̄ =
1
n ∑ xi.

143. The symbol Σ is the capital form of the Greek letter sigma. It
stands for sum.
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144. Other branches of mathematics require limits on the sum, such as

6

∑
i=1

xi

This notation means to sum the data points xi for values of the
index i ranging from 1 to 6.

145. Statisticians often leave the limits off the sum. In this case, it is
implied to sum over all of the data: sum from i ranging from 1 to
n, which is the same thing as above.

146. Finally the coefficient 1
n in front of the Σ tells us to divide the sum

by the total number of data points, n, in this case 6, as above.

147. The mean is a measure of the center of the distribution.



Sampling

148. What is sampling? Let’s proceed with our example from the
previous chapter: we have the test scores of 6 students: 90, 92, 94,
96, 98, 100. The mean of these test scores is 95.

149. Sampling would be indicated if, in addition to these 6 students,
there were many more in the class and we wanted to use the 6

students to study the properties of the whole class.

150. Exactly what properties? Later, we will work with other statistics,
but for now our focus rests squarely on the mean: we want to
assess the mean test score of the whole class by just looking at the 6

students.

151. My example is not really best, because, in practice, the teacher
would probably have all grades for the all students (even if there
were 1000 students). Often the grades are in Blackboard or in a
spreadsheet and it takes one command to calculate the class mean.

152. Sampling only gives an approximation to the right answer. In the
case of grades, the right answer is readily available, so sampling is
not necessary or even advisable.

153. However, in many situations it is impractical to collect data on all
imaginable cases.

154. Example: if you are doing a survey, you can’t feasibly ask every
person in the world. But it is still possible to study the world’s
population by sampling using a much smaller group.

155. Let’s proceed with our grades example ignoring that it is often
inappropriate for this application.

156. For our grades example, our sample size was 6. Six is an unusu-
ally small sample size. The larger the sample, the better.

157. Let’s say the 6 students are among 1000 students in the whole
class.

158. The 6 students comprise the sample.
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159. The 1000 students (which must include the 6) comprise the so-
called population.

160. We want to study the whole class mean: if we had access to all the
grades we could find this number exactly (without sampling) by
adding all 1000 grades and dividing by 1000: the usual mean.

161. But let’s restrict ourselves to only the 6 students. What could we
do?

162. A reasonable approach is to calculate the mean of the sample, or
sample mean. As shown above, the sample mean is 95. That’s our
estimate of the population (i.e. whole class) mean.

163. The sample size is customarily written with the lower case letter n.
In our example, n = 6.

164. If the variable in question is x, the sample mean is customarily
written with the notation x̄:

x̄ =
1
n

n

∑
i=1

xi

165. The sample mean is an example of a statistic.

166. A statistic is a number that describes a sample.

167. The population size is customarily written with the upper case
letter: N. In our example, N = 1000.

168. The population mean is written with the Greek letter mu: µ. Alter-
natively, if the variable in question is x, this is sometimes indicated
as µx:

µx =
1
N

N

∑
i=1

xi

169. The population mean is an example of a parameter.

170. A parameter is a number that describes a population.

171. Mnemonic: Sample and statistic go together: they both start with s.
Population and parameter also go together: they both start with p.

172. You use x̄ as an estimate of µx, but your answer depends on your
sample.

173. Specifically, if your 6 students all happen to be above average, your
estimate will clearly be too high. This scenario is clearly possible.

174. If your 6 students all happen to be below average, your estimate
will clearly be too low. This scenario is also clearly possible.
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175. If some of your students are above average and others are below,
then your estimate might be too high or it might be too low, but it
is unlikely (though possible) that it will be exactly right.

176. Therefore sampling rarely gives the right answer.

177. But in this case, it gives an unbiased estimate, a concept that will be
made more precise below.

178. An unbiased estimate is one that is neither prone to being too high
nor prone to being too low.

179. What does that mean? With 1000 students we can pick our 6-
person sample in many ways. In fact, there are exactly 1,368,173,298,991,500

ways of picking a six member sample from a population of 1000.
(Huh, you say? I’ll show you how to count samples, in the next
chapter.)

180. Each sample leads to a different sample mean (although some
values may repeat). Some of these values are too high, and some
of these values are too low, and maybe a few values are just right.

181. Thus, there are approximately 1.37 quadrillion possible sample
means (including repeats).

182. Each sample mean is a mean of 6 values (but different values for
each sample).

183. What would happen if I added all 1.37 quadrillion sample means
then divided by 1.37 quadrillion?

184. I would get the mean of the sample means!

185. The sense in which the sample mean is an unbiased estimator
of the population mean: the mean of all possible sample means
equals the population mean!

186. In other words, the mean of all possible estimates is the quantity
you are trying to estimate.

187. In this sense, an unbiased estimator is neither prone to being too
high, nor prone to being too low.

188. An unbiased estimator is exactly correct on average. Individual
estimates will likely be too high or too low, but those errors cancel
out when the average is taken.

189. Caution: our result depends on the condition that the sample be
chosen at random.
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190. For example, if the high values are more likely to be chosen than
low values, then clearly the estimator will be prone to estimates
that are too high.

191. A simple random sample is one in which all of the possible samples
have an equal chance of being chosen.

192. Our grades example employs a simple random sample only if
each of the 1.37 quadrillion samples had an equal (1 out of 1.37

quadrillion) chance of being chosen as the sample that we used.

193. There are other strategies for sampling, which will be discussed in
time.

194. However if the professor were to select her favorite 6 students as
her sample, she should not expect an accurate assessment of the
whole class mean.

195. Let’s explore simple random samples:

196. Suppose we want to draw a sample of 2 people from the follow-
ing population of 4 people: Amy, Betty, Carl, and Dennis, each
denoted by his or her initial: A, B, C, and D.

197. There are 6 possible samples: AB, AC, AD, BC, BD, and CD.

198. Each person appears in exactly half the samples. Thus each person
has an equal chance of being in the sample.

199. To draw a sample as a simple random sample, we could assign six-
sided die face to each of the 6 possible samples, then roll the die to
make the selection. Each person would have the same probability
of landing in the sample: 1/2.

200. Some people mistakenly believe that a simple random sample
means that each person has a equal probability of being in the
sample.

201. Let’s explore this scenario. Let’s suppose we don’t have a die—we
only have a coin and we get lazy. We assign AB to heads and CD
to tails. Then again each person in the population has the same
probability, 1/2, of being in the sample, but not every sample can
be chosen: there are no coed samples possible!

202. Characteristics (such height differences among members of the
sample) for which single-sex samples do not fully represent the
population would not be well-studied with this sampling scheme.

203. For a simple random sample, in this example, we must make our
selection among 6 samples, not 2.



Counting samples

204. How many ways are there to choose a sample of n individuals out
of a population of N individuals.

205. This number has a name. It is called, appropriately enough,
“N choose n”.

206. The following is a mathematical notation for this number:(
N
n

)
.

207. What is the number (N
n )?

208. Calculating this number is based on counting the number of ways
of arranging the N individuals in the population into an order.

209. First, how many ways are there of arranging the letters ABCD?
There are 4 choices for the first letter, 3 for the second, 2 for the
third, and 1 for the fourth: 4× 3× 2× 1.

210. This number is better denoted 4!, read “four factorial.” Basic
arithmetic will tell you that 4! = 24. Likewise there are N! (N
factorial) ways of ordering the N individuals in the population.

211. Having enumerated all the ways of ordering the N individuals in
the population, how do we pick a sample from the ordering?

212. It doesn’t really matter how we pick the sample, so let’s just pick
one way and be consistent: from each ordering, pick the first n
individuals from the ordering as the sample.

213. We have found a way of counting orderings of the population, and
picking samples from ordering. Now we try to count the ways of
sampling n individuals from the population of N.

214. Unfortunately, counting orderings of the population will over
count the number of samples, because we can change the ordering
of the population without changing the sample. Indeed, if we just
reorder the first n individuals, the sample, as we have picked it,
doesn’t change.
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215. In our example, with sample size 2, every sample of the correct
size has two reorderings: for example, we can reorder AB as AB
or BA. Note that we count the original ordering AB as one its
possible reorderings.

216. So we should divide the number of orderings by at least 2 to get
the number of samples—but we are not quite done, yet, because
there is a second way of reordering the population without chang-
ing the population. In general, every sample of size n will have n!
possible orderings, so we should divide N! by at least n! to get the
number of samples—but we are not quite done yet.

217. We are not quite done, yet, because, as mentioned, there are actu-
ally two ways of reordering of the N individuals in the population
without changing the sample: we can reorder the first n chosen as
the sample, as done above, or we can reorder the last (N − n) left
out of the sample.

218. The following 4 orderings all give the same sample AB: ABCD,
BACD, ABDC, and BADC.

219. Indeed, there are 4 orderings for each of the 6 of the possible
samples; so we need to divide 24 by 4 (or divide 24 by 2 twice),
which gives 6, as expected. In general, we need to divide N! by n!
and then divide again by (N − n)!, which gives the following result:

(
N
n

)
=

N!
n!(N − n)!

220. Another way of calculating (N
n ) is with Pascal’s Triangle. Here is

Pascal’s Triangle:
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N = 0: 1

N = 1: 1 1

N = 2: 1 2 1

N = 3: 1 3 3 1

N = 4: 1 4 6 4 1

N = 5: 1 5 10 10 5 1

N = 6: 1 6 15 20 15 6 1

N = 7: 1 7 21 35 35 21 7 1

N = 8: 1 8 28 56 70 56 28 8 1

N = 9: 1 9 36 84 126 126 84 36 9 1

N = 10: 1 10 45 120 210 252 210 120 45 10 1

...

221. The rows are labeled by the population size, N, top to bottom,
N = 0, 1, 2, 3, . . .,

222. There is no limit to the number of possible rows in Pascal’s trian-
gle, but the first row, the top row, the apex of the triangle, corre-
sponds to N = 0, the smallest population size.

223. It is not much of a population, if it has no individuals, but the row
for N = 0 is there for completeness.

224. The Nth row has (N + 1) entries.

225. These entries correspond to the sample size, n; left-to-right as
n = 0, 1, 2, 3, . . . N.

226. The smallest possible sample size is zero: n = 0; and the largest
possible sample size is the size of the whole population: n = N.

227. For both smallest and largest samples, there is only one possible
way to draw the sample (respectively, no one in the sample, or
everyone in the sample).

228. The entry corresponding to N and n equals (N
n ), the number we

want to calculate. Note the entry for N = 4 and n = 2 is 6 as we
expected. (Remember to count n from 0, not 1.)

229. The first and last entries in a row are always 1, for the smallest
and largest samples. After that, do you see the pattern? To get any
other entry, add the two entries above it: the one to the left, and
one to the right.



44 the data professor’s guide to basic statistics

Problem 1: A deli gives patrons the option of 3 different breads (rye,
pumpernickel, and white), 2 different meats (chicken and roast beef)
and 8 different toppings (lettuce, tomato, banana peppers, avocado,
grated cheese, relish, black olives and garlic). How many ways can
you make a sandwich with exactly 1 bread, exactly 1 meat, and
exactly 4 different toppings? (One possible sandwich that meets the
criteria is roast beef on rye with lettuce, tomato, avocado, and black
olives.)

Problem 2: What is the row of Pascal’s triangle corresponding to
m = 11?
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Solution 1:

3 breads × 2 meats ×
(

8
4

)
toppings

This simplifies to 420 sandwiches.

Solution 2: The m = 11 row of Pascal’s Triangle is
m = 11: 1 11 55 165 330 462 462 330 165 55 11 1





Standard deviation

230. The standard deviation is a measure of the spread of the distribution—
in other words, how close, or how far, do the data tend to fall from
the mean?

231. I’ll start with a formula, explained below. Confusing: there are ac-
tually two formulas for standard deviation, and many calculators
give you a choice.

sn =

√
1
n ∑(xi − x̄)2

sn−1 =

√
1

n− 1 ∑(xi − x̄)2

232. In the context of sampling (discussed below), the second formula
is correct. Indeed, if there is only one choice given in a book or
a calculator, it is usually the second one. I will call the second
formula the more common formula, and the first formula the less
common formula.

233. Which formula should you use? Short answer: always use the
more common formula. Use of the less common formula should
be noted and justified, and I would say just don’t bother!

234. Why are we discussing the less common formula? Because most
students have a hard time understanding the more common
formula, and think the less common formula makes more sense.
It does make more sense in certain contexts. And I think it is
important to discuss these contexts to better understand the more
common formula.

235. Let’s unpack the formulas.

236. The quantity (xi − x̄) is called the deviations, or deviations from the
mean.

237. Deviations are important because we are trying to estimate how
far the data points fall from the mean.
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238. Each data point has a corresponding deviation from the mean.

239. Consider the same test score example. The first observation, 90, is
5 points below the mean (which was 95). So its deviation from the
mean is −5.

240. Can you guess what the other deviations from the mean are?

241. The other deviations from the mean are: -5, -3, -1, 1, 3, 5.

242. Because the data points are equally spaced, the deviations have a
nice pattern to them. This pattern will not be there in most data
sets.

243. However, it will always be the case that the deviations add to zero.

244. Unless all deviations are actually zero, some will be positive
and others will be negative, in such a way that they will balance
out, adding to zero—this property results from the fact that the
deviations are from the mean and the mean is the center of the
distribution.

245. Because it is useless to average the deviations (the average will
always be zero), we first square the deviations: (xi − x̄)2. For our
data set the squared deviations are: 25, 9, 1, 1, 9, 25.

246. Unless a deviation is zero, its square is positive.

247. The next step is to “average” the squares of the deviations. This
number will be positive unless all of the deviations are zero.

248. The less common formula for sn uses the mean of the deviation as
the average: 70

6 = 11.6667.

249. The more common formula for sn−1 uses an adjusted mean—
adjusted for the so-called number of degrees of freedom or n− 1:
70
5 = 14. The adjusted mean is what is used as the average.

250. The last step, in both formulas, is to take the square root of the

result: either
√

70
6 = 3.4157 or

√
70
5 = 3.7416. Because we square

the deviations in a previous step, we take the square root, so that
the result can more easily be compared with the mean (without
taking the square-root the units change).

251. The more common formula for sn−1 always gives a larger value
than the less common formula for sn.

252. The larger the value of n, the less difference there is between the
results given by the two formulas. The difference between dividing
by 6 or dividing by 5 is much greater than the difference between
dividing by 1000 or dividing by 999.
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253. If you skip the square root step you are left with a quantity that is
also important in statistics. It is called the variance. The variance
has different units than the data.

254. As mentioned above, in the context of sampling, we should use
the more common formula for sn−1. In this context, x̄ is called
the sample mean, and sn−1, also written as s, is called the sample
standard deviation.

255. The more common formula arises in the context of sampling.

256. Now, in addition to estimating the population mean to assess cen-
ter of the distribution, you may want to estimate the population
standard deviation to assess the spread in the distribution—things
get complicated.

257. The unequivocal right answer to the population standard devia-
tion uses the less common formula!, summing over all 1000 students
and using the unadjusted average and substituting the population
mean for x̄.

258. The question is: what is an appropriate estimate of the population
standard deviation using our sample of 6 students, rather than all
1000?

259. Which formula you should use depends on what you use for x̄.

260. If you use the population mean for x̄, as above, you would use the
less common formula, employing the usual unadjusted average.
This is almost never done for lack of access to the population
mean.

261. If you use the sample mean for x̄ (after all, you want to avoid
dealing with all 1000 students) you will get an answer with is
prone to being too small, unless you correct it by changing the
notion of average.

262. To fix this problem, you use the adjusted mean, which appropri-
ately increases your estimate, so that on average, you get a result
which is neither prone to being too high, nor too low.

263. The question is: why does the less common formula lead to an
estimate which is prone to being too low?

264. Consider this fact: the correct result involves an average of
squared-deviations from the population mean.

265. But now consider this fact: We want to take an average of squared
deviations from the sample mean, not population mean.
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266. The problem is, deviations from the sample mean are prone to
being smaller than deviations from the population mean.

267. Why? Consider this example: What if the population mean test
score, instead of being 95, was in fact 70. Our sample wouldn’t be
representative of the population, but that can happen, some times.

268. The deviations from the population mean would be between 20

and 30 whereas the deviations from the sample mean would be
between 1 and 5, as shown above. The sample mean deviations
would be too small.

269. The example above is extreme, but any time the sample mean is
different from the population mean, we have a problem, because
the sample mean is a better estimate for just the sample (it was
derived from the sample) than for the whole population involving
all the data.

270. The sample is closer to the sample mean than the population
mean, but the population mean gives the right answer. The sample
mean’s result is too small, but we can correct this by adjusting our
notion of average.

271. So why divide by n− 1 instead of something else, like n− 2. I am
not sure if anyone has a satisfying non-mathematical answer to
this, although it is clear from a mathematical calculation.

272. It should be pointed out that n− 1 is the number of “degrees of
freedom” in the deviations.

273. There is one less degree of freedom in the deviations than the total
number of deviations because they are constrained to add to zero
as mentioned above, so you are really averaging n− 1 independent
quantities instead of n.

274. Some books justify the more common formula with this argument
concerning the degrees of freedom in the deviations, but for me
the explanation falls flat and doesn’t tell the whole story.



Random phenomena and probability

275. If someone were to tell you that a phenomenon was random, what
would you know about the phenomenon?

276. First of all, you would know that the outcome of the phenomenon
was uncertain.

277. For example, you if you flip a coin, you might get heads and you
might get tails.

278. There is no way to know in advance if each outcome is going to be
heads or tails.

279. But notice that if you flip a coin many times, and the coin is fair
(one side not weighted more heavily than the other), then about
half the time you get heads and about half the time you get tails.

280. A coin flip is a random phenomenon.

281. A random phenomenon is one for which individual outcomes are un-
certain but there is, nonetheless, a regular distribution of outcomes
in a large number of repetitions of the phenomenon.

282. Is it possible for there not to be a regular distribution of outcomes
in a large number of repetitions?

283. This situation is never studied, and I think it is fair to say that
if you lack a regular distribution of outcomes in a large num-
ber of “repetitions,” then you are not really repeating the same
phenomenon. Something is changing.

284. Now that we know that there is a regular distribution of outcomes
in a large number of repetitions, we can define probability.

285. The probability of any outcome of a random phenomenon is the
proportion of times the outcome would occur in a very large series
of repetitions of the phenomenon.

286. The concept of probability can be made more precise with the
concept of a limit. The probability is the limit of the proportion



52 the data professor’s guide to basic statistics

of times the outcome would occur as the number of repetitions of
the phenomenon goes to infinity. Limits are something studied in
calculus, which you may or may not be familiar with.



Probability models

287. A probability model describes a random phenomenon in the lan-
guage of mathematics, specifically set theory.

288. When we describe a random phenomenon, there are two things we
care about: (1) what various outcomes are possible, and (2) how
likely are the various outcomes?

289. For a fair coin flip, there are two possible outcomes: heads and
tails. Each happens with probability 1/2.

290. For a fair 6-sided die toss, there are 6 possible outcomes, usually
labeled with dots: , , , , , and . Each happens with
probability 1/6.

291. Note how probabilities arise.

292. How do we formalize these statements into probability models?

293. We use set theory.

294. A set is a collection of objects.

295. The statement “a set is a collection of objects” is not a mathemat-
ical definition of the concept of a “set.” It is a description of the
concept in terms of a synonym: “a collection.”

296. So, what is the precise mathematical definition of a “set?”

297. Funny you should ask, because “set” happens to be only one of
two concepts in all of mathematics that do not have a definition.
(The other is “element of a set.”)

298. You may remember from Geometry in high school that most
concepts studied had definitions in terms of simpler concepts.

299. But there had to be some concepts that were the simplest possible.

300. In high school geometry there were three simplest concepts. They
were the so-called undefined terms.
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301. Those simplest concepts were (1) point, (2) line, and (3) plane.

302. In the rest of mathematics the simplest concepts are “set” and
“element of a set”.

303. These concepts have no definitions in mathematics.

304. Numbers, functions, and other concepts are defined in terms of
simpler notions that eventually lead to “set” and “element of set.”

305. In early 20th century, the mathematician Hilbert defined “point,”
“line,” and “plane,” in terms of simpler notions of “set” and “ele-
ment of a set.”

306. But “set” and “element of a set” is as far as you can go. You have
to start somewhere.

307. Remember that even though there are no definitions for point,
line and plane in high school geometry, these concepts are pinned
down by five postulates (also called axioms).

308. Set theory has its own set of axioms, (called the Zermelo-Fraenkel-
Choice, or ZFC, Axioms), which precisely pin down the notion of
“set” and “element of a set.”

309. The ZFC axioms are too technical to discuss here, but feel free to
Google.

310. At this level it is better to explain set and element of a set with
examples.



Probability mass versus probability density

311. Consider the following game of chance: we roll a fair six-sided die.
If the die shows , we win 1 dollar. If the die shows , we win 2

dollars. If the die shows or , we win 3 dollars. And if the die
shows or , we lose 5 dollars.

312. Let the random variable X be our winnings for one game, which
will be negative if we lose money.

313. One question we will answer in a future lesson: should we play
the game?

314. For now, we are going to discuss the differences between discrete
and continuous random variables: specifically a discrete random
variable has probability mass at its possible values, whereas a
continuous random variable has probability density.

315. Remember, a discrete random variable is one having a finite
number of possible values.

316. And a continuous random variable is one having a continuous
range (hence infinite number) of possible values.

317. For our die game, there are 4 possible values for the random
variable, X, our winnings for one game: -$5, $1, $2, and $3. Thus X
is discrete.

318. Let’s create a probability table for this game. Remember, a proba-
bility table for a discrete random variable lists the finite number
of possible values for the random variable, together with their
respective probabilities.

Values -$5 $1 $2 $3

Probabilities 1/3 1/6 1/6 1/3

319. A probability of 1/3 (or 2/6) corresponds to the value -$5, and
$3, because, in each case, two out of the six die faces lead to that
outcome. (E.g. for -$5, it’s and .) Likewise, a probability of 1/6
corresponds to winning $1 or $2.
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320. We can graph the information in the probability table as a proba-
bility histogram. See below.
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Probability Histogram for Game with Die

321. A probability histogram is a “theoretical histogram” for a dis-
crete random variable, just like a density curve is a “theoretical
histogram” for a continuous random variable.

322. What is a “theoretical histogram?”

323. If you (1) repeat the random phenomenon under consideration
many times, and (2) each time compute the random variable
from the outcome of the random phenomenon, then (3) put those
numbers into a column of a spreadsheet and finally (4) use those
numbers to generate a histogram, then that data histogram should
look like the theoretical histogram.

324. What does “should look like” mean?

325. Random variation will lead to deviations between the data his-
togram and the theoretical histogram—the match won’t be perfect.
But the more data you generate, and the smaller your bin width
(for the continuous case), the smaller the deviations are likely to
be, and, with increasing certainty, your data histogram will will
look more and more like the theoretical histogram.

326. For any histogram, the values of the random variable (e.g. win-
nings, in our running example), lie on the horizontal axis, but the
vertical scale can differ.

327. The vertical scale for a discrete probability histogram is relative
frequency, the theoretical proportion of data points with that have
that value.
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328. Theoretical histograms for continuous random variables (density
curves) use a different vertical scale: density.

329. Remember, the density scale used for continuous random variables
is the relative frequency of a very small bin around the given
value, divided by the width of that very small bin.

330. The calculus notions of limit and derivative make the definition of
density precise.

331. Why don’t we use relative frequency for continuous random
variable histograms?

332. And why don’t we use density for discrete random variables?

333. Answer: first, because, as will be explained below, the relative fre-
quency of all individual points for a continuous random variable is
zero—useless for describing the random variable!

334. Second, because, as will also be explained below, the density of
a discrete random variable is infinite at all possible values of the
random variable—also useless!

335. Let’s develop these ideas a little.

336. Theoretically, what is the relative frequency for each bin (propor-
tion of observations falling inside) for a discrete random variable’s
histogram?

337. Answer: it is the sum of the probabilities of the possible values of
X falling within the bin.

338. In our die game example, consider a bin that contains both $2 and
$3, and no other possible values for X (that is, it doesn’t contain
$1 nor, (obviously), -$5). The proportion of observations falling
within this bin (relative frequency) is 1/2 (or, equivalently, 3/6)
because there are 3 possible die faces out of 6 (specifically, , ,
and ) which lead to values of the random variable inside this
rather wide bin, spanning both $2 and $3).

339. On the other hand, if a bin contains just one possible value for the
random variable, its relative frequency is just the probability of
obtaining that one possible value.

340. In the die game example, the relative frequency of a small bin
containing $3, but no other possible values of X, is 1/3, no matter
how small the bin.

341. This result means that the relative frequency of the value $3 is 1/3.
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342. The situation is different for continuous random variables, where
the proportion of observations in a bin does depend on bin width
(unless the density is zero).

343. Consider a uniform random variable. As we discussed previously,
the uniform distribution is a continuous distribution in which
all values are possible within a continuous range between two
extremes (e.g. 0 and 1), and moreover all of these values remain
equally likely.

344. “Equally likely” ends up meaning equal density.

345. Remember, the density curve for the uniform distribution is a
rectangular “box” between its extremes (e.g. 0 and 1) and zero
beyond these extremes.

346. Remember, the area under any given density curve is 1, so the
closer together the extremes fall, the higher the box.

347. Recall, the proportion of observations that land within an interval
is the area under the density curve above that interval.

348. In calculus, this quantity has a name: we call it the definite integral
of the density curve over that interval.

349. So the relative frequency of a bin of a histogram for data coming
from the uniform distribution, contained within the extremes is

relative frequency, uniform, bin within extremes = width of bin×height of box.

350. Notice, if we shrink the width of a bin by 1/2, the relative fre-
quency of the bin goes down by 1/2.

351. And if we shrink the box to a single point, the relative frequency
goes to zero.

352. Put another way, and said more generally, the relative frequency of
any individual value within a continuous distribution is zero.

353. If we tried to use a relative frequency curve to convey the same in-
formation that a density curve conveys we would fail because the
relative frequency curve would be everywhere zero—completely
uninformative!

354. Of course a real histogram for continuous data can use relative
frequency as its vertical scale and it won’t be everywhere zero!

355. Why? Because the bin width won’t ever be zero. With a non-zero
bin width, you get non-zero relative frequencies.
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356. So why don’t we use relative frequency as our scale?

357. We can, but we have the following problem: For a continuous
random variable, the height of the relative frequency histogram
will depend on the bin width!

358. Look again at the equation for relative frequency, uniform.

359. Only if we divide the relative frequency by the bin width do we get
a value that is independent of the bin width.

360. Remember: dividing the relative frequency by the bin width gives
us density.

361. A relative frequency histogram is a poor description of a contin-
uous distribution, because, for continuous random variables, the
relative frequency depends on an arbitrary choice of bin width.

362. Unfortunately, for non-uniform, but still continuous distributions,
(where the density curve is not a constant height), the relative
frequency will depend not just on the bin width, but also on the
endpoints of the bin—and so will density.

363. What you have to do instead is divide by the relative frequency
by the bin width, then shrink the bin to a point, which is made
precise with the calculus notion of a limit.

364. For people who know calculus, I’ll fill you in. (Don’t worry if
you don’t know calculus, just skip this bullet point.) Consider the
function

f (x) = Probability(Random Variable ≤ x)

Let h be the width of the bin, then the proportion of observations
within a bin that starts at x is f (x + h) − f (x). Divide by the
bin width h and take the limit as h goes to ∞ and you get the
definition of the derivative for f . In an advanced book you, will
see that the definition of a continuous random variable is one for
which this function f has a derivative. Its derivative is the density
of the random variable. But for discrete random variables, this
derivative does not exist (the limit is infinite).

365. Density, defined this way, does not depend on such arbitrary
choices, making it a better description of a distribution.

366. Calculus aside, why don’t we use density for discrete random
variables?
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367. Remember, for our example, a bin containing the value $3 but no
other possible value of winnings had a relative frequency of 1/3:

relative frequency, die game, $3 =
1
3

368. In this case, we get the same value, independent of bin width,
without dividing by bin width.

369. If we do divide by bin width we get a density estimate that grows as
the bin width shrinks.

370. Why grow? Because the numerator stays constant and we divide
by smaller and smaller numbers. Dividing by 0.1 is the same as
multiplying by 10. Dividing by 0.01 is the same as multiplying by
100, etc.

371. We might say the density is infinite.

372. The analogy to mass and density is helpful.

373. As an analogy, elements like lead and gold have different densities,
even if they have the same mass.

374. An ounce of pure lead has more volume than an ounce of pure
gold.

375. We define density as mass divided by volume; gold has higher
density than lead, regardless of volume.

376. The analog of mass in probability is called probability mass.

377. All probability distributions have total mass 1.

378. Probability mass is spread out along the number line, either along
a continuum for continuous distributions, or among isolated
points for a discrete distribution.

379. Probability density is probability mass divided by length (no
volume, because there is only one dimension here)

380. Think: Density for bin equals the proportion of observations in bin
(mass) divided by bin width (length).

381. For discrete distributions, probability mass is concentrated on
individual points, not spread out across a continuum,

382. When concentrated on individual points the density at those
points is infinite, whereas, when mass is spread out along a contin-
uum, the mass at any given point is zero.

383. A physicist might call a mass with infinite density a “black hole.”



Sampling distributions

384. Remember the example we used in the Sampling chapter?

385. We had a sample of 6 students out of a population of 1000 and the
6 students had the following scores on an exam: 90, 92, 94, 96, 98,
and 100.

386. In that example, the sample mean was x̄ = (90 + 92 + 94 + 96 +

98 + 100)/6 = 95.

387. In that chapter, we were interested in an estimate, based on these
six students, of the population mean.

388. Remember, if we happened to have the scores for all 1000 students
in the class, we would have been able to exactly compute the
population mean adding all 1000 scores, then dividing that sum by
1000.

389. In the situation of the Sampling lesson, we only had the scores of
the six students in our sample, not all 1000 students in the class,
so we used the sample mean, 95, as an estimate of the population
mean.

390. In other words, we used a statistic to estimate a parameter.

391. Remember, a statistic is a characteristic of a sample, like the sample
mean.

392. Remember, a parameter is a characteristic of a population, like the
population mean.

393. There is only one population mean: the sum of the 1000 scores
divided by 1000. Parameters always have just one possible value.

394. Statistics generally have lots of possible values, because samples
can generally be drawn in many different ways.

395. Indeed, there is a different sample mean for each different sample
that can be drawn. (However sometimes values repeat.)
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396. In our example, we counted almost 1.37 quadrillion different
possible samples.

397. Remember what the distribution of a variable tells us? It tells us:
what values the variable takes and how often it takes those values.

398. The distribution of a statistic, also called its sampling distribution
tells us what values the statistic takes and how often it takes those
values—across all its possible values, corresponding to all the
different possible samples.

399. For our population, what values does the sample mean take, and
how often does it take them?

400. The answer to the question should not yet be obvious (and indeed,
we need more information to answer it), but it should already be
clear that the answer interests us.



Spread in sampling distributions

401. For samples chosen randomly (specifically for samples chosen
as what we called simple random samples), the sample mean is an
unbiased estimate of the population mean.

402. Remember the definition of an unbiased estimate? It is was an
estimate where the mean of all possible estimates equals the
correct value of the quantity being estimated.

403. In this case, the mean of all possible sample means (for all possible
samples that can be drawn) equals the population mean.

404. We desire unbiased estimates, but it also matters how much varia-
tion there is in the estimate across the samples.

405. Depending on both the sample size and the variability in the
population, it could happen that if we repeat the phenomenon of
drawing samples then using those samples to calculate sample
means, the computed sample means could vary considerably from
each other.

406. Sampling distributions (the distribution of a statistic computed
from a sample) can be described as any other distribution: center,
and spread, modes and skewness, mean and standard deviation,
median, quartiles, percentiles, etc.

407. We know that the mean of the sample means is the population
mean.

408. Therefore, the population mean is the mean of our sampling
distribution. (This value measures the center of the sampling
distribution for sample mean).

409. We could have also used the median or mode to measure the
center of the sampling distribution, however we typically we use
the mean to measure the center of sampling distributions.

410. What about the spread in the distribution?
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411. We will use the standard deviation to measure the spread of the
sampling distribution. We could also use quartiles or percentiles,
but these alternative are less common.

412. If the standard deviation is relatively large, then we can expect
widely different estimates of the population mean for different
samples—even if they are simple random samples.

413. Thus, if the standard deviation of the sampling distribution is
large, we might not want to trust any one particular estimate, even
if the estimates are unbiased. (I.e. center is in the correct place but
the spread is all over the place).



The sample mean as a discrete random variable

414. In a previous lesson, we defined a statistic as a characteristic of a
sample.

415. A statistic can take on different values depending on how the
sample is drawn.

416. What values the statistic takes and how often it takes them is the
sampling distribution of the statistic.

417. The sampling distribution of a statistic has center (e.g. mean) and
spread (e.g. standard deviation), as well as, perhaps, any other
characteristics of a distribution, such as peaks, gaps, symmetry
and/or skewness.

418. Now we go a little farther. But maybe this statement won’t come
as a surprise: a statistic is a random variable.

419. Let’s develop this idea a little.

420. In the Sampling chapter, we said that there were exactly 1,368,173,298,991,500

different ways of selecting a sample of 6 students from a popula-
tion of 1000.

421. We also identified this monstrous number, exactly, as “1000 choose
6,” which could also be written as:(

1000
6

)
.

422. A simple random sample gives an equal chance to each possible
way of selecting the sample (in this case, each sample has a 1 in
approximately 1.37 quadrillion chance of being selected).

423. This sampling process is a random phenomenon, just like flipping
a coin, or rolling a die.

424. Remember, random phenomena had outcomes. The set of all out-
comes was called the sample space and subsets of the sample space
were called events.
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425. The sample space for sampling is the set of all possible samples.

426. I imagine the name sample space comes from sampling, but statis-
ticians now apply it more generally to the set of outcomes of any
random phenomenon.

427. In our case, the sample space is the set of approximately 1.37

quadrillion possible six-person samples drawn from the popula-
tion of 1000 people.

428. Remember, we defined a random variable as a function that as-
signed a number to each outcome in a sample space.

429. Just like we assigned a number to each possible outcome of tossing
a coin three times (we used the number of heads), let’s assign a
number to each possible outcome of the sampling phenomenon.

430. In other words, let’s define a random variable mapping each of the
1.37 quadrillion possible samples to a number.

431. What number? A number that characterizes the sample: i.e. a
statistic.

432. How about this idea? To each of the 1.37 quadrillion possible
samples we assign the sum of the scores of the individuals in that
same sample, divided by the sample size.

433. In other words, to each sample, we assign its sample mean.

434. Because there are just under 1.37 quadrillion outcomes in our
running example, there are at most 1.37 quadrillion possible values
for this random variable.

435. Actually, there will probably be somewhat less than 1.37 quadrillion
values for the random variable because more than one sample can
share the same sample mean.

436. Certainly this coincidence occurs if more than one student shares
the same exam score—because there will be different samples with
the same scores.

437. But sample means can coincide in other ways, as well—specifically,
if different sets of scores average to the same value.

438. On the other hand, in theory it is possible that all 1.37 quadrillion
sample means have different values.

439. But in our case, if the 1000 scores are all integers between 0 and
100, samples means will certainly repeat.
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440. Either way, the sample mean has a finite number of possible
values.

441. Remember, a discrete random variable is one with a finite number
of possible values.

442. For sampling from a population of N individuals, as long as N is
finite, the sample mean is a discrete random variable, with a finite
number of values.

443. Though finite, the number of possible values for the sample mean
may be astronomically large, even if N isn’t.





The sample mean as a continuous random variable

444. Remember the exam score example: we know the exam scores of a
sample of 6 students from a population of 1000 students in a large
multisection basic statistics class.

445. If we had access to all 1000 exam scores, we could put them into a
histogram, just like we could for any other quantitative variable.

446. Likewise, if we had access to all 1,368,173,298,991,500 six-person
sample means, we could put them into histogram, again, just like
we could for any other quantitative variable.

447. To be able to access 1.37 quadrillion non-integer numbers on a
computer (typically, stored as double precision floats, requiring 8

bytes each) you would need about 11,000 one-terabyte hard drives.
Google probably has such resources, but hardly anyone else does.

448. Let’s stick with just the 1000 exam scores, for now.

449. As hinted at earlier, exam scores often follow a Normal distribu-
tion (but not always).

450. Following a Normal distribution implies that the QQ-plot for the
1000 exam scores approximates a line and the histogram for the
exam scores approximates a bell curve.

451. If the exam score distribution is truly Normal, then any discrep-
ancies between these approximations and the predictions of the
Normal distribution stem from random, well-characterized, fluctu-
ations.

452. However, if a random variable truly has a Normal distribution, it
must be a continuous random variable with a continuous range of
possible values—not a discrete random variable, with only 1000

possible values.

453. Indeed, choosing a small enough bin width for the histogram
of the exam scores will inevitably reveal the gaps that must fall
between the exam scores actually achieved by students.
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454. If the exam scores are all integers, then gaps will appear at all
non-integer values, as well as any integer value not attained as one
of the 1000 students’ exam scores.

455. Being discrete, the population distribution for the exam scores is
not Normal.

456. Nonetheless, statisticians sometimes find it convenient to use
continuous distributions to approximate discrete ones.

457. How?

458. Approximating a discrete random variable with a continuous
random variable involves filling in the gaps of the histogram (in a
reasonable way).

459. Going back to the material of a previous lesson, filling in the gaps
amounts to smearing the probability mass across the continuum,
so that mass within larger bins remains roughly the same, but the
mass no longer remains concentrated at individual points.

460. From the discrete probability histogram, we get a continuous
density curve for the exam scores.

461. The histograms of the discrete and continuous distributions should
look the same except at very small scales (i.e. except at very small bin
widths).

462. Different software packages might accomplish this smearing
(sometimes called smoothing) differently. We won’t discuss the
algorithms.

463. But if the QQ-plot for 1000 exam scores reasonably approximates
a line (or equivalently, if the histogram for the exam scores rea-
sonably approximates a bell curve) then a bell curve might be a
reasonable way to fill in the holes.

464. In this case, we would approximate the discrete exam score distri-
bution with a Normal distribution. But which Normal distribution
should we use?

465. Normal distributions differ only in their mean and standard
deviation.

466. If we had access to all 1000 scores, we might compute their popula-
tion mean and population standard deviation to use as parameters
for the continuous Normal distribution approximation.

467. If we didn’t have access to all 1000 scores, we would have to settle
for estimates based on samples. But hopefully, in this case, our
sample size would be substantially greater than 6.
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468. If the QQ plot didn’t follow a line, we might use another distribu-
tion, with a density curve that was not a bell curve.

469. In theory, we could use any density curve to approximate the
distribution of a discrete random variable, however we would
want to use one that looked like the histogram, plotted with
density on the vertical scale and using an appropriate bin width.

470. Remember, all continuous distributions have density curves that
describe them.

471. Remember, any curve above or on the horizontal axis, enclosing
an area of 1, is a valid density curve. The most commonly used
distributions have names (such as Normal or uniform), but every
different valid density curve gives a different distribution, so most
distributions do not have names.

472. Let’s get back to sampling.

473. We approximate drawing a six-person sample from a finite (1000-
person) population as drawing six samples from an infinite popu-
lation whose exam scores are a continuous random variable.

474. Instead of 1000 exam scores attainable within a sample of our
population (possibly with repeating values), with the continuous
approximation there are now infinitely many possible values for
each exam score—each score can take on any value within a whole
continuous range.

475. So, instead of a number (possibly as large as 1.37 quadrillion, but
definitely finite) of different attainable six-student sample means,
we now have infinitely many.

476. Have we gained anything?

477. Yes, because it is easier to deal with a density curve, that you can
approximate with an equation, than it is to deal with up to 1.37

quadrillion different possible values for the sample mean.

478. Most calculations with density curves involve calculus.

479. Even with its density curve completely and correctly specified,
saying that we draw six numbers from a distribution does not
completely specify the random phenomenon of sampling. We need
to say something more.

480. We need to also say how the different numbers relate to one an-
other.
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481. For instance, if you choose one student with a low exam score, are
you more or less likely to pick the next student with another low
exam score?

482. For sampling from continuous distributions, the usual answer is
“previous selections have no effect on subsequent selections, and
vice-versa.”

483. This statement means the selections are independent.

484. We usually describe continuous sampling as drawing n people
independently from the same continuous distribution.

485. But surprisingly, for discrete sampling from finite populations, this
perhaps innocuous sounding statement does not hold!

486. And the smaller the sample size, the more egregious the differ-
ence.

487. Why? For independent selections, we said that previous selections
did not affect the distribution of subsequent selections.

488. Consider the following example: suppose there was just one poor
soul who did not study at all for the exam scored a zero while
everyone else scored a perfect 100.

489. At first there is a 1 in 1000 chance of picking the zero, but once
you have picked the slacker for your sample, you know you can
never pick him again for the same sample, so in subsequent selec-
tions the probability of picking the slacker goes down to zero.

490. In other words, for finite sampling, previous selections do affect
the probability distribution of subsequent selections—meaning the
selections are not independent.

491. What about smaller sample sizes? Consider the following fact: for
a similar three person population the probability of picking the
slacker would go down from 1/3, at first, to 0, after you select him,
a considerably greater difference in probability than going from
1/1000, at first, to zero after picking the slacker.

492. On the other hand, if you don’t pick the slacker at first, the prob-
ability of picking him goes up in subsequent selections, and
substantially so, with small population sizes. This result also
demonstrates non-independence.



Sampling distribution versus population distribution

493. We highlight a distinction between the sampling distribution and the
population distribution.

494. The sampling distribution tells you what the values a statistic takes
(e.g. sample mean of test scores) and how often it takes them—
across all possible samples from a population.

495. The population distribution tells you what values a variable takes
(e.g. test scores) and how often it takes them—across all possible
members of a population, not samples.

496. Actually, for the same population, there are different sampling
distributions, depending on the sample size.

497. In our case, the sample size was 6, but in other scenarios the
sample size could be 1, 2, 3, etc.—any integer, n, between 1 and
and the population size, N, inclusive.

498. Question: How many ways are there to draw a one-person
sample—i.e. how many samples have n = 1?

499. Answer: There are exactly as many ways to select one person from
a population as there are people in the population. In other words,
there are N ways, (where N is the population size), to draw a
one-person sample.

500. In our exam score example, because the class size is N = 1000,
there are 1000 one-person samples.

501. For any sample size n, to get the sample mean, you add up n
numbers (e.g. n exam scores) and divide by n.

502. If n = 1, you add up just one number (e.g. one exam score) and
divide by one.

503. So in our example, when n = 1, the sample mean is just the score
of the one selected student.



74 the data professor’s guide to basic statistics

504. So, what is the sampling distribution for the sample mean of
one-person samples?

505. What values does the sample-size-one sample mean take, and how
often does it take those values?

506. Can you see that sample-size-one sampling distribution for the
sample mean of a variable is the same as population distribution for
the same variable?

507. Specifically, the mean of “the sample-size-one sample means” is
the population mean, the sum of 1000 test scores, divided by 1000.

508. While this coincidence holds for the sample mean, it does not
necessarily hold for other statistics.

509. For example, mean of “the sample-size one sample standard
deviations” is not the same as the standard deviation across the
whole population.

510. Similarly, the standard deviation of “the sample-size one sample
standard deviations” is not the same as the standard deviation
across the whole population.

511. Indeed, with Bessel’s correction, the sample standard deviation
for a sample-size-one sample doesn’t even exist, because with
Bessel’s correction you divide by n− 1 instead of n in the formula
for standard deviation.

sn−1 =

√
1

n− 1 ∑(xi − x̄)2 with Bessel’s correction.

512. To reiterate, if n = 1, you can’t calculate the sample standard
deviation with Bessel’s correction, because you can’t divide by
zero.

513. But the problem lies beyond just Bessel’s correction.

514. Let’s remove Bessel’s correction and see what we get—we get
another statistic that characterizes the sample.

515. Remember, with or without Bessel’s correction, the sample stan-
dard deviation is a biased estimate of the population standard
deviation, but the bias is somewhat worse (especially for small
sample sizes) without Bessel’s correction. Both statistics are used
in practice, but the one with Bessel’s correction is used far more
commonly.
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516. Remember, without Bessel’s correction, the standard deviation is
the square root of the mean of the squares of the deviations from
the mean.

sn =

√
1
n ∑(xi − x̄)2 without Bessel’s correction.

517. With sample size one, there is just one data point, so there is just
one deviation from the mean.

518. But then the data point must coincide with the mean, so the lone
deviation from the mean must be zero.

519. So to find the sample standard deviation without Bessel’s correc-
tion, we take the square root of the mean of the squares of...of just
this one zero—which always equals zero.

520. The mean of “the sample-size-one sample standard deviations
(without Bessel’s correction)” is the mean of 1000 zeros—which
equals zero.

521. At the same time, the standard deviation of “the sample-size-one
sample standard deviations (without Bessel’s correction)” is the
standard deviation of 1000 zeros—which also equals zero.

522. At the same time, the population standard deviation is almost
never zero. (It can only be zero if all N scores are the same.)





Probability tables for discrete sampling

523. In theory, we can describe finite sampling with a probability table,
which, in our 6 chosen from 1000 example, would be way to large
to write down.

524. Remember that probability tables have two rows: the first for
possible values of the random variable, and the second for their
respective probabilities.

525. Actually, sometimes it is useful to write a redundant probability
table (my terminology), with three rows: one for outcomes, one for
values, and one for probabilities.

526. In a redundant probability table, instead columns for each possible
value of the random variable, there are columns for each outcome
in the sample space. Thus, there could be more than one column
with the same value for the random variable.

527. In the “flip three coins and count heads” example, there will be
separate columns in the redundant probability table for TTH, THT,
and HTT, even though the value of the random variable (number
of heads) is, in each case, 1.

528. In the first row of the redundant probability table for “flip three
coins and count heads” go the eight outcomes: from TTT to HHH.

529. In the second row of the redundant probability table go the values
of the random variable, with repeats: in this case, number of heads
from 0 to 3.

530. In the third row of the redundant probability table go the probabil-
ities of each outcome, 8 repetitions of 1/8; not 1/8, 3/8, 3/8, and 1/8.

531. For the exam score sampling example, in the first row of the
redundant probability table go all 1.37 quadrillion possible 6-
student samples.

532. In the second row, go the sample means, possibly with repeats.
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533. In the third row, go the probability of each sample. With a simple
random sample, each of these probabilities is the exact number
1/1, 368, 173, 298, 991, 500.

534. It is impossible to know the probabilities in the non-redundant
probability table without knowing how many samples get each
score. For this knowledge, you would need to know the exam
scores of all 1000 students.

535. Why? Consider the case of the sample mean of 95. At least one
sample, the one we originally drew has a sample mean of 95.

536. Now consider: we know that the scores of the 6 students in our
sample range from 90 to 100.

537. What if every other student in the class got a 0 on the exam?
(That’s 994 zeros: ouch!)

538. Then every other sample replaces at least one, and maybe more,
maybe all 6, scores with a zero, so every other sample mean is less
that the 95 we originally obtained.

539. In this case, there would be only 1 sample with a sample mean of
95 and the probability of getting 95 for a sample mean would be 1

in 1.37 quadrillion.

540. On the other hand, what if every other student (994 of them)
scored a 95 on the exam? Then, all the many samples that do not
contain one of our six students has a sample mean of 95, and that
scenario is not the only way to get a 95 for the sample mean.

541. In this case, the probability of getting a 95 for a sample mean is
much closer to 1 than it is to 0.

542. If you know the probabilities, and especially if they are equal, it
can sometimes be easier to work with a redundant probability
table.



Tests of significance

Introduction

543. In statistics, we are often faced with making decisions based on
partial information—often samples, sometimes small samples,
from a larger population.

544. For instance, a drug company must decide to put a new drug on
the market. Should they?

545. When considering the benefits of a new drug to treat a specific
disease, the population of interest is every person in the world
with that disease.

546. Consider the following response variables: how much does the
patient improve, and for how long do they survive?

547. The only way to definitively answer the drug company’s question
is to measure the response variables for all possible patients (all
people with the disease), for all treatments (including placebo and
control) while holding all other factors constant.

548. Obviously, no one can conduct such a study.

549. So we are left with random samples.

Running example

550. We are going to work with our running example, already familiar
to you.

551. In this example, this year, a hypothetical university has imple-
mented a novel teaching method, and the university wants to
compare students’ performance this year with their performance
last year.

552. Using their comparison, the university will make a decision
whether or not to continue using the new method and to push
its implementation at other universities.
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553. The university plans to use the scores on one exam—the same
exam given this year and last—to compare performance.

554. They have framed the following question: have students scores
improved, on average, this year, over last year? They have decided
that any improvement, on average, no matter how small, would
justify the change in teaching methods.

555. Of course, it is very easy to answer this question if you have the
grade books for both classes: just compute the population mean
for this year, and compare it to the population mean for last year.

556. But it gets difficult when you only have samples of the students
grades to work with.

557. Of course, a university would probably have access to all the
grades—but in other domains, working with samples is impera-
tive.

558. We are going to restrict ourselves to samples, but remember:
you are trying to answer a question about the population means.
Specifically is the population mean higher this year?

559. Comparing sample means is not the same as comparing popula-
tion means. Conclusions based on samples can differ, depending
on the luck of the draw (i.e. the luck of how the sample is drawn).

560. The population means give the correct answer to the question, so
conclusions based on samples may, or may not, be in error.

561. Therefore, with sample data and without population data, we can’t
even give a definitive answer to the question we posed.

562. So we revise our question: “Based on sampling, do we have suffi-
cient evidence to conclude that the population mean has increased
this year?”

563. We will show that we can answer this question, but the “sufficient
evidence,” our conclusion may still be wrong—we can still make
an error.

564. How much evidence is sufficient? You design a test of significance
to make the probability of error acceptable.

One sample or two?

565. Three situations are possible: (1) you have samples for both years,
(2) you have a sample for one year and population data for the
other, (3) or you have population data for both years.
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566. First, you might be stuck with samples for both years. In this case,
you would do a two sample test.

567. Second, you might have all the scores for one year, but only a
sample for the other. In this case, you could do a one sample test.

568. With a one sample test you have more information than with a
two-sample test, so assuming your information is correct, you will
be more likely to make the right decision, all other things being
equal.

569. Of course, if you had all the information—all grades for both
classes—you wouldn’t even have to do a test of significance.

570. That said, even if the university had all the grades, they might decide to
use a two sample test!

571. Why? They might decide to think of each class as a sample from a
larger population.

572. What population? The population of all students in the world, or
maybe the population of all students who might conceivably enroll
in their classes.

573. Unfortunately, a university’s classes are not random samples from
any larger population, so any conclusions drawn from such a two
sample test are hard to interpret based on rigorous statistics.

The data

574. Let’s continue with our example of the sample of 6 students (with
exam scores 90, 92, 94, 96, 98, 100), from a class of 1000 students
total.

575. It is important to realize that this sample was not, in fact, drawn
randomly from any population. If it had been, we should be very
surprised at the regular spacing. Still, this sample is familiar to
you from earlier lessons, and for our purposes it will suit us just
fine.

576. So assume that these scores come from a simple random sample
from this year’s class, and they are the only scores we know of for
this year.

577. But, we have access to the entire grade book for last year: all 1032

exam scores in a spreadsheet (a few more people took the class
last year). We will call this class the regular class because, later, we
identify a different group of students as honors.
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578. To simulate these data, I used a program I wrote in the software
package R, that implemented modified distribution that is not
available in many simpler software packages, like StatCrunch.

579. You won’t be able to simulate these data without R and the pro-
gram I wrote, but you can download the grade book (see below).

580. I am not going to tell you, until later, about the program that
generated the data. These details are irrelevant for solving the
problem and would just distract you. Clearly, this information
would not even exist if you had real scores from a real class with
real students.

581. There are too many scores to print, but here are the first 10 scores
out of 1032 (the rest can be downloaded, see below):

## [1] 80 85 81 86 80 70 80 80 85 82

582. I use the software package R to generate the data, then put the first
10 generated numbers into this document, then save all 1032 gen-
erated numbers to an Excel file. All of this is done automatically,
each time I create the PDF you are reading. You might be confused
by the “## [1]” before the list starts. That is R’s way of saying
that the whole list of 1032 begins with the first number shown.
This embellishment can be helpful when the list spans multiple
lines—each line will start with its own marker noting the position
of the line in the list. I have decided to leave these markers in the
document, throughout.

583. Let’s look at a different group of students taking a similar class
last year—all honors students. There were only 210 students in
this group but that’s still too many to print. Here are the first 10

scores (the rest can be downloaded, see below):

## [1] 95 89 92 92 95 91 86 89 93 99

584. You should download the data sets now (regular one with 1032

scores, the honors one with 210 scores). You can find these data
with the rest of the data for the course.

585. After you download the data you should load the data into the
statistical software package that you use for class.

586. Now, answer the questions in the textboxes below. My answers
follow each question.
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What is the first thing you should do with new data?

587. Answer: You should graph your data! Do it now.

How did you create your graphs?

588. There is only one column here, “Scores,” so we should ask: is the
variable quantitative or categorical?

589. If you try to think about this question deeply you might be con-
fused if you notice that all exam scores are integers. You should
have noticed this when you loaded the data. So you might
tempted to try to justify calling the scores variable ordinal cat-
egorical.

590. The problem is, we have already decided to base our decision
on population means—the mean is meaningless for categorical
variables—so we have actually already made our decision.

591. So we are left with two choices: stemplots and histograms. There
is too much data for a stemplot. So we are left with a histogram.

592. Actually there are other graphs we have learned about for a single
quantitative variable: box plots and QQ plots. These may be
helpful later, especially the QQ plot.

593. But the histogram will usually convey the most information for a
variety of distributions, so it is a good choice for the first plot. (But,
of course, doing several graphs is always good, too.)

594. What bin width did you choose? Did you pick the default that
your software package provided? The default is seldom the best
choice. Start with it, then tweak it.

595. Because the scores are integers, we should consider a bin width
of 1. That way each score gets its own bin. Try it and you will see
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that are enough students, and the scores cluster together in the
right way, to make these choice helpful.

596. Let’s take a look at the histogram for both classes:

0

25

50

75

100

60 70 80 90 100
Scores

co
un

t

Last Year's Regular Class



tests of significance 85

0

5

10

15

20

60 70 80 90 100
Scores

co
un

t
Last Year's Honors Class

597. After looking at these histograms, you might ask yourself, what
would have happened if we choose to consider the scores as an
ordinal categorical variable?

598. With an ordinal categorical variable, we would be stuck with pie
charts and bar graphs. After working with the possibilities, we
would find that a bar graph, with the natural ordering, conveys
the most information. (Pie charts and Pareto orderings would be
useless for this variable.)

599. Interesting: a bar graph with the natural ordering would look
almost the same as the above histogram, except that it would have
spacing between the bars—spacing that would also appear in
the histogram if we chose a smaller bin width. What choices best
convey the information in the distribution? What do you prefer?

The main question

600. Moving to the main question for today’s lesson: Based on the sample
of 6 students from this year’s class (with exam scores 90, 92, 94, 96, 98,
100), do we have enough evidence to conclude that students in this year’s
class have scored higher, on average, than students in last year’s classes?
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601. Actually, we can identify two separate questions: the first com-
pares this year scores to last year’s regular student scores, and the
second compares this year’s scores to last year’s honors student
scores.

602. Note that, while you have all scores, for all students in both of
last year’s classes, I never gave you the scores for the other 994

students in this year’s class. I don’t have these scores. I never ran a
simulation to create them. They are irrelevant for the question we
are addressing, which was framed as “Based on [just] the sample
of 6 students from this year’s class, do we have sufficient evidence
to conclude that students are doing better, on average, this year?”

603. With a random sample, even though we have only 6 out of 1000
scores, we will see that it is possible that we can have very strong
evidence that students are doing better, on average, this year.

604. The histogram for last year’s regular class already suggests that we
will find such strong evidence for this class.

605. Notice that very few students scored in the 90’s, and no student
(out of 1032) scored higher than a 97.

606. Now look at the sample of students from this year: all 6 students
scored above 90, and two of the 6 students scored above last year’s
maximum with scores of 98 and 100.

607. So clearly, we don’t have the same scores this year as last year, but
the question remains, could all the scores be drawn independently
from the same distribution, this year and last?

608. We can’t answer this question definitively with our data: we might
see the same data either way, depending on the luck of the draw.

609. But the following might be clear already: if all the scores, this year
and last, were drawn from the same distribution, then our sample would
be very unusual and unexpected, provided, of course, it was drawn as
a simple random sample.

610. Please note the importance of the simple random sample stipulation:
if the professor her favorite 6 students as the sample of 6, we
might not find our data unexpected—even if the scores of all
students in both classes were drawn from the same distribution.

611. We interpret unusual and unexpected data as evidence in support
of the statement the change we are looking for has occurred. But
the data must unusual and unexpected if no change has occurred,
and they are less unusual and less unexpected the change we are
looking for has occurred.
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Test statistic

612. We need to quantify “unusual and unexpected” for a sample.

613. We are going to use one number, called a test statistic.

614. The test statistic, as its name suggests, is a statistic—a number that
characterizes a sample—so it must be a function of the six scores in
our sample.

615. We are going to use the sample mean as our test statistic.

616. We interpret greater sample means, as stronger our evidence that
scores have improved, on average, this year.

617. Our sample mean was 95. Is that high enough?

618. We are going to choose a critical value for the test statistic.

619. In our case, if our sample mean is greater than our critical value,
we are going to deem the evidence sufficient to conclude that
student’s are doing better this year, on average. Otherwise, we will
deem the evidence insufficient for this purpose.

620. Our sample mean was 95. But how should we pick our critical
value? Is it greater than or less than our sample mean?

Hypotheses

621. We want to pick the critical value for the test statistic to control the
probability of error.

622. But to control the probability of error, we must be precise about
the statements we want to say are true or false.

623. This is done with what is called hypotheses. Tests of significance are
sometimes called hypothesis tests.

624. The first hypothesis is called the null hypothesis. It is usually the
statement that no effect or no change has occurred.

625. The second hypothesis is called the alternative hypothesis. It is
usually the statement that the change you are looking for has
occurred.

626. You should write these hypotheses in terms of the parameters of
the population, but I’ll use English.

627. Our null hypothesis: “the six exam scores from this year’s sample
came from the same distribution as the one last year’s scores came
from.”
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628. Our alternative hypothesis: “the six exam scores from this year’s
sample came from a distribution whose population mean is
greater than the one that last year’s scores came from.”

629. Always write hypotheses in terms of parameters. Never write
hypotheses in terms of statistics.

630. The truth or falsity of hypotheses should never depend on how the
sample is drawn.

631. Notice that the null hypothesis is specific: it says that this year’s
sample’s scores came from the one distribution that is the same as
last year’s.

632. Notice that the alternative hypothesis is not specific: it says that
this year’s sample’s scores came from any distribution that has a
greater population mean than last year’s population mean.

633. Statisticians sometimes prefer the term simple over specific. The null
hypothesis is simple whereas the alternative hypothesis is not.

634. The null hypothesis is often abbreviated H0, whereas the alterna-
tive hypothesis is often abbreviated as Ha.

The distribution of the test statistic

635. Do we first need to know the distributions mentioned in our
hypotheses to test our hypotheses?

636. Remember, we are going to use a test statistic (in this case, sample
mean) to weigh the evidence for or against our hypotheses.

637. In our example, if the sample mean is unusually and unexpectedly
high, we will deem the evidence sufficient to conclude that the
scores have improved, on average, this year.

638. How will we know how high is high enough?

639. To answer this question, we need to know: What values does the
test statistic take and how often does it take its values? Only then
will we know what values are unusual.

640. In other words, we need to know the sampling distribution for the
test statistic.

641. We derived our test statistic from our sample of this year’s data.
We only have one value for the test statistic, so how can we find its
distribution?
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642. We can simplify things with an assumption: we will assume one of
our hypotheses is true.

643. The alternative hypothesis is not good choice here, because there
are lots of possibilities for the sampling distribution under alterna-
tive hypothesis—the alternative hypothesis is not simple.

644. On the other hand, there is only one possibility for the sampling
distribution of the test statistic under the null hypothesis. In our
case, it is the same as the distribution of the sample means for last
year’s class—and we know all the scores from last year’s class.

645. As it turns out, finding sampling distribution of the test statistic
under the null hypothesis is good enough to be able to perform
tests of significance—and as you will soon see, it is often much
easier than finding the distribution of the scores.

646. But how do we find the distribution of last year’s sample means?

647. We can simulate the distribution with software (you should al-
ready know how): Draw 5000 six-scores samples from last year’s
regular class scores, calculate the sample mean for each.

648. Remember, there more than a quadrillion possible samples of size
6 that can be drawn from a population of last year’s class size—we
are generating just 5000 of them.

Follow the instructions above for drawing sample means and put the results into one column.

Now plot a histogram of the sample means computed above.
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649. Did you tweak the bin width? I used a bin width of 1/6 for the
above plot because every sample mean (being a sum of 6 integers
divided by 6) is a multiple of 1/6. With this choice, every possible
sample mean gets its own bin. I would not recommend making
such a choice with a somewhat larger sample size.

650. Compare your histogram of sample means plotted above with
the histogram for the last year’s scores—and remember we are
working with the regular class.

651. Some things to notice: First, the center of the sample means is
almost the same as the center of the scores.

652. Second, the spread of the sample means is somewhat less than the
spread of the scores.

653. Both the distribution for the sample means and the distribution
for the scores seem close to Normal. However, we can say that
the distribution for the sample means more closely approximates
a Normal distribution, because the gaps in the histogram are
smaller: width 1/6 versus 1.
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Compute summary statistics for the regular sample means: mean and standard deviation.

Compute summary statistics for the regular scores: mean and standard deviation.

Find formulas relating the parameters that correspond to the summary statistics, above.

To check your work, compare your answers for the previous three problems.

Check the Normality of the regular sample means. Use a graph different from a histogram.
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654. The QQ-plot looks pretty straight so we can say that our test
statistic (sample mean) closely follows a Normal distribution.

655. Indeed, whenever our test statistic is the sample mean, we should
expect the distribution of the test statistic to follow a Normal
distribution.

656. Why? Remember, the Central Limit Theorem tells us that (aside
from some technicalities that we don’t usually need to worry
about) sample means closely follow a Normal distribution when-
ever the sample size is large enough.

657. If you are interested in the technicalities, Google “Central Limit
Theorem.”

658. Our sample size, 6, happens to be small enough that we might
indeed need to be concerned if there were strong outliers or sub-
stantial skewness.

659. But the QQ-plot of sample means confirms that, in our case, these
concerns are unfounded.

660. Consider the importance of the Central Limit Theorem: no matter
what distribution our data come from, we can use the sample
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mean as a test statistic and expect its distribution to be Normal—at
least as long as the sample mean is large enough.

661. Can you see the huge importance of the Central Limit Theorem?

662. And it turns out in many cases, like in ours, that the sample size
doesn’t even need to be especially large.

663. We’ve made a QQ-plot of sample means, now make a QQ-plot of
scores.

Make a QQ-Plot for last year’s regular scores.

Make a QQ-Plot for last year’s honors scores.

664. Observe that the honors scores are less normal than the regular
scores—there is some skewness to the honors scores.

Make a QQ-Plot for last year’s honors sample means.

665. Observe that despite the increased skewness of the honors
scores, the honors sample means still closely follow a Normal
distribution—even though the sample size was only 6.

666. Had there been stronger skewness or outliers in the scores distri-
bution, we might have needed a larger sample size to accurately
use a Normal distribution to approximate the distribution of
sample means.

667. There are methods for dealing with non-standard distributions of
the test statistic, however, if the QQ-Plot of sample means reveals
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a problem with using a Normal distribution as an approximation,
the easiest solution is usually to up your sample size.

668. Now repeat the calculations done above for the honors class.

Compute summary statistics for the honors sample means: mean and standard deviation.

Compute summary statistics for the honors scores: mean and standard deviation.

Find formulas relating the parameters that correspond to the summary statistics, above.

To check your work, compare your answers for the previous three problems.

669. The work you performed above answers the question: what distri-
bution does the test statistic follow?

670. We established that the test statistic follows a Normal distribution,
but remember the Normal distribution requires parameters.

671. The parameters of the Normal distribution are mean and standard
deviation.

672. You have already found these parameters—in two ways.
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673. First, you sampled 5000 sample means (out of over a quadrillion)
and computed the sample mean and sample standard deviation
(summary statistics) of these 5000 sample means.

674. Second, you computed the mean and standard deviation of the
entire population of last year’s scores. You probably used the
same summary statistics to do make this calculation, but you should
interpret the results returned as the population parameters for last
year’s scores.

675. The formulas you found above relate these two results. Your
answers should have been:

µsample means = µscores

σsample means =
σscores√

n

676. Using these equations you can find the parameters for the distri-
bution of the test statistic without sampling the sample means.
You just need to know the population mean and the population
standard deviation for the scores from last year—which we do
know, or can calculate, because we know all the scores.

677. The equations above are exact whereas the sampling method is
prone to sampling error.

678. You should definitely know the equations above, but also remem-
ber the sampling error can be made as small as you want with a
large enough sample size.

679. What was our sample size for sampling the sample means?

680. The relevant sample size for sampling sample means above is 5000,
even though the sample size for each individual sample mean is
only 6. Yes, this gets confusing.

681. Note that the sample size for sampling the sample means is con-
strained only by your computational power, not by your ability to
collect data. If you know all of last year’s scores, which we do, you
can essentially make the sampling error (for sampling the sample
means) as small as you want.

682. We have found the parameters of the test statistic’s distribution
two different ways.

683. Now that we know the distribution of the test statistic and its
parameters—for both of last year’s classes—we can decide upon
a critical value for the test statistic that controls the probability of
error.
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Type I and type II errors

684. We can make two types of errors: a false positive, and false nega-
tive.

685. In our example, a false positive means we say students are doing
better, on average, this year, when in fact they are not.

686. Likewise, a false negative means we say students are not doing
better, on average, this year, when in fact they are.

687. False positives are called type I errors.

688. False negatives are called type II errors.

689. In terms of hypotheses, a type I error means we reject the null
hypothesis, when in fact it is true.

690. A type II error means we fail to reject the null hypothesis when in
fact it is false.

691. Statisticians traditionally speak of errors in terms of the null
hypothesis, although it would be possible to talk about errors in
terms of the alternative hypothesis.

Controlling the probability of errors

692. Let’s compare the one sample mean from this year’s sample with
the population means from last year’s classes. Remember the
sample of scores for this year was (90, 92, 94, 96, 98, 100), so its
sample mean was 95.

Compare 95 with the population mean for last year’s regular class.

Compare 95 with the population mean for last year’s honors class.
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693. In each case, the sample mean for this year’s class is greater than
the population mean for last year’s classes.

694. Remember we used the sample mean as an estimate of the pop-
ulation mean. If we make this estimate for this year’s class, our
estimate will be greater than the known population mean for both
of last year’s class.

695. So should we say students are doing better this year? Better than
both the regular students and the honors students?

696. The statement that the sample mean from this year’s class is
greater than the population mean of last year’s scores is, of course,
evidence that students are doing better this year.

697. But from a statistical point of view, that statement alone, in and of
itself, is very weak evidence that students are improving.

698. Consider this: what if the distribution of test scores for this year
was, in fact, the same as the distribution of one of last year’s
classes? Put another way, what if our null hypothesis was cor-
rect? What is the probability that we would make an error based
on one sample mean being greater than the population mean?

699. If the null hypothesis is correct, we can only make a type I error.
Our error cannot be a False Negative because in this case, Negative
is not False.

700. So what is the probability of a type I error?

701. We can answer this question with our sampling distribution.

702. Using your sampling distributions for last year, and assuming the
distribution hasn’t changed this year, compute the probability that
a sample mean drawn randomly from this year’s class will be
greater than the population mean for last year’s honors class? This
is the probability of a type I error.

Compute the probability mentioned above.

703. Having trouble? Remember our sampling distribution is approxi-
mately Normal and its mean is the same as the population mean
last year. But the population mean last year is the same as this
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year’s sampling mean. So we need to know, what’s the probability
of observing a statistic (the sample mean) greater than the mean of
its sampling distribution.

704. With any symmetric distribution, such as the Normal distribution,
the mean equals the median, and with all continuous distributions,
the probability of landing above the median is 0.5.

705. So the probability of a type I error, if we reject the null hypoth-
esis whenever the sample mean for this year is greater than the
population mean for last year is 0.5—for most applications this
probability is unacceptably high.

706. For most application we want better control on type I errors.

707. Tests of significance are designed to control for the probability of a
type I error.

708. Type II errors are also important, but they are harder to pin down
because when the alternative hypothesis is true there can be many
distributions for the test statistic (the alternative hypothesis is not
simple).

709. The probability of a type I error is denoted α and is called the level
of significance of the test.

710. Let’s give the name weak test to the test that deems student’s
performance better than last year if the sample mean for this
year is greater than the population mean for last year. The name
is appropriate because with very weak evidence it deems an
improvement.

711. You found the level of significance for the weak test to be 0.5.

712. For comparison, traditionally statisticians choose the level of
significance as 0.05.

713. Statisticians are starting to move away from the α = 0.05 tradition
as they recognize that the best α is a trade off between the costs
of type I and type II errors. These costs are different for different
problems.

714. I should point out that type II errors are usually controlled by
adjusting the sample size. The higher the sample size, the smaller
the probability of a type II error, all other things being equal,
including the probability of a type I error. But without changing
the sample size, as type II errors become less likely, type I errors
become more likely, and vice-versa.
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715. Let’s design different tests to determine if this year’s students are
doing better—tests that have the traditional level of significance.

716. We look for evidence against the null hypothesis. If we succeed,
we reject the null hypothesis in favor of the alternative hypothesis.
If we reject the null hypothesis, we have found an effect, and our
results are significant.

717. Remember, we say that if the test statistic is greater that a the
critical value then we deem our evidence sufficient to conclude
that scores have improved, on average.

718. A result that the test statistic exceeds critical value is called signifi-
cant. This is where the name test of significance comes from.

719. How do we choose the critical value? If our test statistic is x̄, then
this critical value will usually be denoted x̄∗.

720. Answer: we want to choose x̄∗ so the probability of the type I error
is our desired level of significance, in this case 0.05.

721. How do we do that?

722. Remember a type I error can only occur when the null hypothesis
is true.

723. When the null hypothesis is true, a type I error occurs when the
sample mean exceeds the critical value.

724. Why? Because then we erroneously reject the null hypothesis, by
deeming the evidence sufficient to conclude (incorrectly) that the
students are doing better this year, on average.

725. It is very important to realize that even if the null hypothesis is true it
is possible to draw a random sample for which the sample mean
exceeds the critical value of the test statistic. When this happens
you incorrectly reject the null hypothesis (a type I error).

726. To reiterate, the probability of type I error is α, the level of signifi-
cance of the test. You pick α. Your choice determines x̄∗.

727. How are we going to pick x̄∗?

728. We want to pick x̄∗ such that the probability that the sample mean
is bigger than x̄∗ is equal to the level of significance.

729. You have already found the distribution for the sample mean
under the assumption that the distribution has not changed from
last year.



100 the data professor’s guide to basic statistics

730. Find x̄∗ for each test (regular and honors). Hint: use the func-
tionality of your software that allows you to compute percentiles
corresponding to values and values corresponding to percentiles of
the relevant distribution.

731. Hint use the Normal calculator in StatCrunch, put the parameters
of the sampling distribution in and put in the α.

Find the critical value for the regular sample mean.

Find the critical value for the honors sample mean.

Compare the sample mean (95) with the regular class critical value of the sample mean.

Compare the sample mean (95) with the honors class critical value of the sample mean.

Do you reject the null hypothesis for the regular class?
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Do you reject the null hypothesis for the honors class?

For the regular class, do you have a significant result?

For the honors class, do you have a significant result?

P-values

732. You have now done tests of significance by comparing the test
statistic with the critical value for the test statistic.

733. However, tests of significance are usually performed without
computing the critical value of the test statistic explicitly, unlike
what you did above.

734. Instead of the critical value for the test statistic, something called
the p-value is computed. Tests with p-values are completely equiv-
alent to tests with critical values, however p-values are usually
easier to interpret than critical values.

735. What is a p-value?

736. At least for the tests we have done here, the p-value is the prob-
ability assuming the null hypothesis is true of drawing a six-person
sample whose sample mean is greater than the sample mean actu-
ally observed in the data (which, in this case, greater than 95).

737. The greater the sample mean (the one actually observed in the
data, but not necessarily 95), the stronger the evidence that the test
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scores for this year are better, on average, than the test scores from
last year.

738. The greater the sample mean, less the probability assuming the null
hypothesis is true of drawing another sample whose mean is even
greater than our original sample mean.

739. The probability of drawing a sample whose sample mean is
greater than 95 is the p-value for our sample.

740. The p-value quantifies the strength of the evidence against the null
hypothesis.

741. What threshold for the p-value determines significance? To answer
this question, consider what is the p-value for a sample mean that
coincides with critical value of the sample mean. The answers to
the next three questions immediately below should be the same for
both tests under consideration.

Find the threshold for p-values mentioned above.

For what p-values does the test reject the null hypothesis?

For what p-values does the test find significance?

742. What is the p-value assessing the evidence provided by our sam-
ple of from this year’s exam scores (90, 92, 94, 96, 98, 100) that
students are scoring the same on average (null hypothesis) or bet-
ter on average (alternative hypothesis) than the students in last
year’s regular class?
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743. You can calculate p-values with the Normal calculator in a manner
complementary with the manner of calculating critical values.

What is the p-value mentioned above?

For this test, do you reject the null hypothesis?

For this test, do you find significance?

744. What is the p-value assessing the evidence provided by our sam-
ple of from this year’s exam scores (90, 92, 94, 96, 98, 100) that
students are scoring the same on average (null hypothesis) or bet-
ter on average (alternative hypothesis) than the students in last
year’s honors class?
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What is the p-value mentioned above?

For this test, do you reject the null hypothesis?

For this test, do you find significance?

745. What is the p-value if the sample mean for this year’s exam scores
is actually equal to the population mean for last year’s exam
scores (instead of being 95, as assumed above). The answer should
be the same whether or not you consider the regular class or
honors class, although the population mean is different in each
case.

What is the p-value mentioned above?

For this test, do you reject the null hypothesis?
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For this test, do you find significance?

746. I have heard that most non-statisticians who nevertheless use tests
of significance in their research do not understand what a p-value
is.

747. I think it’s a disgrace, and it is really a failure of most basic statis-
tics courses, like this one. Many of you will use and study statis-
tics in other courses but won’t take another class from a statisti-
cian. If you don’t understand p-values and tests of significance
now, you may never.

748. The reason I bother to bring this up is that the misconception of
many people may actually help you understand p-values.

749. If you ask non-statisticians to explain p-values, many will tell you,
if they think they know, that “the p-value is the probability that
the null hypothesis is true.” (This is incorrect.)

750. This misconception is compelling for the following reasons:

751. First, the p-value actually is a probability, just not the probability
that the null hypothesis is correct. In our example, it is the proba-
bility, assuming the null hypothesis is true, of drawing a six-person
sample whose sample mean is greater than 95 (the sample mean
seen in our data).

752. Second, being a probability it acts like a probability: specifically, it
is a number between 0 and 1, inclusive.

753. Finally, we can interpret the p-value in a way that does suggest
that the misconception is, to the contrary, accurate.

754. Specifically, if the p-value is low, the null hypothesis “probably
isn’t correct” and if the p-value is high the null hypothesis “may
indeed be correct.” This interpretation, as stated here, is, indeed
valid, and is the way you should interpret it.

755. The problem is: how would we compute the p-value, if we think,
incorrectly, that it is the probability that the null hypothesis is
true? How would we even make sense of this statement?
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756. Consider this: although we only have scores for the six students in
our sample, the test was given to all 1000 students, and although
we don’t know all 1000 scores, the exams have been graded and all
students have their scores.

757. If we had access to all 1000 scores we could definitively answer the
question, without a shadow of a doubt: are student doing better,
on average, this year than last.

758. If the distributions are truely the same, the null hypothesis is
correct, regardless of what data we collect

759. On the other hand, if the population mean this year is greater
than the population mean last year, even by just a little bit, then
the correct answer is that you should reject the null hypothesis in
favor of the alternative hypothesis. The null hypothesis is false,
again, regardless of what data we collect.

760. It should be pointed out that if the population mean this year is
actually lower than population mean last year (i.e. if the students
are doing worse this year not better), then technically the null
hypothesis is not correct, but because of the way we framed the
alternative hypothesis (students are doing better) our p-values will
likely be higher than if the null hypothesis is true and we will be
even less likely than the level of significance to find a significant
result.

761. Note that the truth or falseness of the null hypothesis has ev-
erything to do with the populations and nothing to do with the
sample.

762. But the probability of the null hypothesis is true can only be inter-
preted as the proportion of samples (in the discrete distribution)
for which the null hypothesis is true.

763. The null hypothesis either is or isn’t true, independent of what
sample we draw.

764. Therefore the null hypothesis either is true for all 1.37 quadrillion
samples or for none of these samples.

765. In other words the probability that the null hypothesis is true
either is 1 or it is 0.

766. What’s worse we have no way of knowing from just the data
in the sample whether the probability is 1 or 0. If we had this
information we would not have to use a test.
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767. All that said, go ahead and remember the incorrect statement that
the p-value is the probability that the null hypothesis is true.

768. The incorrect statement will at least give you the right intuition.
Specifically, you will remember that when the p-value is low, the
null hypothesis probably isn’t correct and when the p-value is
high, the null hypothesis may indeed be correct.

769. There is a reason I say “when the p-value is high, the null hypothe-
sis may indeed be correct,” rather than “when the p-value is high
the null hypothesis probably is correct.”

770. The reason for the linguistic gymnastics is that even if the p-value
is high, the population mean for this year may indeed be greater
than the population mean for last year: the null hypothesis is false.

771. This situation is likely to arise if both the difference between
the population means is small, and the sample size is small. In
this case, you tend need to gather more data to have compelling
evidence that the population means are different.

772. When a p-value is high there is not that the probability of the null
hypothesis is high—its that you lack evidence to refute the null
hypothesis.

773. This is the main problem with the incorrect statement “the p-value
is the probability that the null hypothesis is correct.”

774. If you remember the incorrect statement as a mnemonic for in-
tuition, remember the statement is incorrect and why, and also
remember the following statement which gives better intuition:
“The p-value measures the strength of the evidence against the null
hypothesis. The lower the p-value, the stronger the evidence.”





Big Picture Highlights

What follows below lists some of the main themes of the semester.
The list should not be considered a complete list of topics that need
to be studied. Rather the list should be seen as an attempt to convey
the scope of what we covered throughout the semester.

775. The first half of the semester concerned ways to describe data; the
second concerned inference.

776. Describing data was called exploratory data analysis.

777. Exploratory data analysis involved (1) making graphs, and (2)
deriving summaries.

778. Graphs were used to show the distribution of variables.

779. Pie charts and bar graphs were used to show the distributions of
single categorical variables.

780. Stemplots and histograms were used to show the distributions of
single quantitative variables. Later we introduced box plots for
this purpose.

781. To display the relationship between two quantitative variables,
scatterplots were used.

782. For summaries, we used mean, median, and modes to describe
the center of the distributions of single quantitative variables.

783. We used standard deviation, quartiles, and percentiles to show
the spread of single quantitative variables.

784. We used counts and proportions for categorical variables

785. And we used correlation and regression to describe relationships
between pairs of quantitative variables.

786. In the second half of the semester we considered the alternative to
describing data: inference.
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787. For inference, we draw conclusions about parameters of a popula-
tion based on statistics from a sample.

788. Our first foray into inference was to derive point estimates.

789. The sample mean was an estimate of the population mean for
quantitative variables.

790. The sample standard deviation was an estimate of the population
standard deviation for quantitative variables.

791. The sample proportion was used an estimate of the population
proportion for categorical variables.

792. For means and proportions, the estimates were unbiased.

793. For standard deviation, we could not get around the fact that the
estimate was biased, though Bessel’s correction improved matters
some.

794. The next thing we did was to look at sampling distributions for
our statistics.

795. Studying sampling distributions required us to develop probabil-
ity theory.

796. We derived formulas for the mean and standard deviation of the
sampling distribution of the sample mean, sample counts and
sample proportions (for different kinds of variables).

797. The shape of sampling distribution for the sample mean was given
by the Central Limit Theorem—approximately Normal if the
sample size is large enough (and often it didn’t need to be that
large).

798. And we tested hypotheses about parameters with tests of signf-
icance. There were a number of choices that needed to be made
here.

799. We extended point estimates to confidence intervals.
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