
NEUROFIT: software for fitting Hodgkin�/Huxley models to
voltage-clamp data

Allan R. Willms

Department of Mathematics and Statistics, Biomathematics Research Centre, University of Canterbury, Private Bag 4800, Christchurch, New Zealand

Received 21 March 2002; received in revised form 24 July 2002; accepted 25 July 2002

Abstract

I introduce publicly available software for accurate fitting of Hodgkin�/Huxley models to voltage-clamp data. I describe the

model and non-linear fitting procedure employed by the software and compare its results with the usual method of fitting such

models using potassium A-current data from a pyloric dilator cell of the lobster Panulirus interruptus and sodium current data from

an electrocyte cell of the electric fish Sternopygus macrurus . The set of parameter values for the model determined by this software

yield current traces that are substantially closer to the observed data than those determined from the usual fitting method. This

improvement is due to the fact that the software fits all of the parameters simultaneously utilizing all of the data rather than fitting

steady-state and time constant parameters disjointly using peak currents and portions of the rising and falling phases. I analyze the

convergence properties of the software’s fitting algorithm using simulated data showing that accurate parameter values are obtained

for most of the parameters using any reasonable initial values. The software also incorporates a linear pre-estimation procedure to

help in determining reasonable initial values for the full non-linear algorithm. I illustrate and discuss some of the inadequacies of

voltage-clamp data.
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1. Introduction

The voltage-clamp method has been used extensively

in the past 50 years to obtain data from which the

behavioral properties of ion channels can be determined.

These properties are usually described by the values of

parameters for a particular model. The Hodgkin�/

Huxley (HH) model for voltage-dependent channels,

which specifies a set of independent gates governed by

first order kinetics, has been widely and successfully

used (Hodgkin and Huxley, 1952; Rinzel and Lee, 1987;

Buchholtz et al., 1992; Guckenheimer et al., 1993; De

Schutter and Bower, 1994; Luo and Rudy, 1994),

although other models, such as multi-state models

(Goldman, 1975; Destexhe et al., 1994; Marom and

Levitan, 1994) have also been employed.

As a technological development, the voltage-clamp

allowed Hodgkin and Huxley to formulate and verify

the idea that the excitability of the neuronal membrane

was due to the independent flow of specific ions across

the membrane through voltage-dependent channels

(Hodgkin and Huxley, 1952). Mathematically speaking,

the constant voltage environment allowed the equations

of their model to be solved analytically, and permitted a

relatively easy computational method of determining

estimates of the parameter values from the recorded

data. This method, which is still regularly employed

today, uses peak currents from a series of voltage-clamp

experiments to estimate the steady-state parameters for

the gates, and portions of the rising and falling phases of

the current to estimate the time constants of activation

and inactivation. However, it must be emphasized that

this disjoint method is primarily one of computational

ease and not the most accurate method available for

fitting parameters to data of this type. With the

computing power available today, more sophisticated

methods can be employed to obtain estimates of theE-mail address: a.willms@math.canterbury.ac.nz (A.R. Willms).
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parameters which are much more consistent with the

data.

We have developed a method for fitting HH model

parameters to voltage-clamp data which uses the full
current trace rather than just pack currents or just rising

or falling phases (Willms et al., 1999). This method finds

least-squares estimates for both steady-state and dy-

namic parameters simultaneously by fitting the mathe-

matical analytic solution of the differential equations to

the entire current (or conductance) trace. The advan-

tages and success of this method over the usual disjoint

method are described fully in that paper. We also made
the software (FULLTRCE) implementing this method

available to others. However, FULLTRCE was not very

user-friendly and lacked features such as the ability to

graph the data and resulting fits, or read binary files

produced by proprietary voltage-clamp software.

Here I wish to announce an improved user-friendly

version of that software which is available for public use

from http://www.math.canterbury.ac.nz/�/matharw/
neurofit/. This new software (called NEUROFIT) will

read data files in either text format or Axon Instruments

binary format (abf files). The data are plotted on the

screen and the user is allowed to specify a region of the

data which she/he wishes to fit. After giving the number

of activation gates and other specifications for the

model and the fitting algorithm, the software fits the

model to the data, plots the resulting fitted curves on top
of the displayed data, and displays the fitted values and

standard errors for all of the parameters.

Two examples in Section 3.1 illustrate the superiority

of the algorithm employed by NEUROFIT over the

usual disjoint method. (A fuller comparison of this

method with the disjoint method can be found in Willms

et al. (1999).) In this paper, I extend the analysis of the

algorithm employed by NEUROFIT by determining its
convergence properties using simulated data. The results

in Section 3.2 show that accurate parameter values are

obtained for most of the parameters using any reason-

able initial values. Some of the inadequacies of voltage-

clamp data are discussed in Section 4.

2. Methods

This section gives a precise formulation of the HH

model employed by NEUROFIT, and a short descrip-

tion of the fitting procedure.

2.1. Hodgkin�/Huxley model

The electrical current through the ion channels is a
product of the conductance, g , and the difference

between the membrane potential, V , and the reversal

potential, Erev, for the current,

I �g(V�Erev): (1)

The conductance is given by,

g�gmaxmph; (2)

where gmax is the maximal conductance, p is the number
of independent activation gates, and m and h are the

fraction of open activation and inactivation gates,

respectively.

As a generalization of the usual HH scheme, the

channels are classified into one of several groups

depending on their kinetic inactivation properties. There

are nh different groups of inactivating channels. All of

the channels in all of these groups have one inactivation
gate and identical steady -state inactivation properties,

but each group has different kinetic inactivation proper-

ties. There may also be one additional group with non-

inactivating channels (nnonh�/0 or 1). Thus the total

number of groups is n�/nh�/nnonh, n ]/1. The fraction

of channels in group i is given by fi ; these fractions add

to one, an
i�1 fi�1: The variable hi represents the

fraction of open channels in group i , and the overall
fraction of channels with open (or non-existent) inacti-

vation gates, h is given by,

h�
Pnh

i�1 fihi; if nnonh�0;Pnh

i�1 fihi�fn; if nnonh�1:

�
(3)

This generalization of the standard HH scheme was

used to allow reasonable fitting of currents such as the

crustacean transient potassium current, IA, which shows

at least a double exponential time course of inactivation

(Harris-Warrick et al., 1995). The behavior of IA could

also be captured using a more complex generalization,
such as having the fi be voltage-dependent (Buchholtz et

al., 1992), allowing each group to have different steady-

state inactivation properties, or by using a multi-state

model, but I have found the above generalization to be

sufficient for fitting IA data.

The dynamics of the gates are governed by the first

order differential equations,

dm

dt
�

m�(V ) � m

tm(V )
; (4)

dhi

dt
�

h�(V ) � hi

thi
(V )

; i�1; . . . ; nh; (5)

where the steady-state curves are given by the Boltz-

mann functions,

m�(V )�
1

1 � exp((V � V2m)=sm)
; (6)

h�(V )�
1

1 � exp((V � V2h)=sh)
; (7)

with half potentials, V2x , and slope factors, sx , x�/m or

h . The time constants of activation, tm , and inactivation
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thi
; are voltage-dependent and are specified indepen-

dently for each step potential.

2.2. Fitting procedure

NEUROFIT fits voltage-clamp data. Each trace has a

specified pre-step potential, Vp, and step potential, Vs.

The data for each trace consist of a set of times and

electrical currents, (tj , Ij ), j�/1, 2, . . ., N . For each

trace, Eqs. (4) and (5) are solved analytically with V�/

Vs, using initial conditions determined by Eqs. (6) and

(7) evaluated at V�/Vp. Thus it is implicitly assumed

that the pre-step was held sufficiently long for the
activation and inactivation to have achieved their

steady-state values. For a given set, a , of parameter

values, the current, I(t , Vp, Vs, a ), is then calculated

from Eqs. (1)�/(3) and compared to the observed

current. The software attempts to choose the parameter

values, a , to minimize the quantity,

R�
XN

j�1

�
I(tj; Vp; Vs; a) � Ij

sj

�2

;

where sj is the noise level for data point j . These noise
levels are the same for each point in a trace and are

estimated at the beginning of the optimization proce-

dure by fitting the end of each trace (where the data are

essentially constant) to a low-order polynomial. The

optimization procedure employed by NEUROFIT is the

well-known Levenberg�/Marquardt algorithm (Moré,

1977) and has been implemented as a C translation of

the Fortran code lmder.f, the latter being freely
available from Bell Lab’s Netlib facility.1 The algorithm

makes use of the analytic Jacobian of I(tj , Vp, Vs, a )

when determining how to adjust the parameter values in

order to decrease R . The current is then re-calculated

using the adjusted parameter values and the process is

iterated until R converges to a minimum or another

termination condition is encountered.

As with any non-linear least-squares algorithm, a set
of initial values for the parameters must be supplied by

the user. The program allows parameters to be held

constant at their specified value or varied by the

optimization algorithm. This feature allows the user

to, for example, fix the reversal potential if it is known

to be a specific value. If the data are particularly difficult

to fit, this feature also aids in obtaining good results by

allowing the user to fix a number of parameters at
reasonable values and ask the algorithm to obtain

optimal values for the remainder. The obtained optimal

values can then be easily transferred to the initial values

and the fitting algorithm re-run with more of the

parameters allowed to vary.

Since the non-linear optimization algorithm is based

on local quadratic approximations of the function R ,

there is always the possibility that the algorithm will

converge to a local minimum for the parameters, a ,
rather than the global minimum. The existence of local

minima depends on the complexity of the model

employed and is a strong argument for keeping the

model as simple as possible. To ensure that any obtained

solution is not just a local minimum, it is necessary to

choose initial values that are sufficiently close to the

global minimum. I discuss this issue in Section 3.2

below.
As an aid to the user in determining reasonable initial

values for the non-linear fitting algorithm, NEUROFIT

also has a ‘Quick Fit’ option which generates fairly good

parameter estimates and only requires an initial value

for the reversal potential, Erev. The ‘Quick Fit’ algo-

rithm basically de-constructs the problem into a series of

linear problems and is based on the method described by

Tóth and Crunelli (1995). The values obtained by ‘Quick
Fit’ may then be used as initial values for the full non-

linear fitting algorithm, although in some instances these

values may not be very accurate and may need to be

adjusted by the user before doing the full non-linear fit.

This is particularly the case for the time constants of

inactivation if nh is greater than one. Nonetheless, using

this linear pre-estimation procedure should increase the

likelihood that the non-linear algorithm will converge to
the global minimum.

3. Results

3.1. Examples

Here I compare the results obtained by NEUROFIT

with those obtained by the usual disjoint method for

voltage-clamp data from two voltage-dependent inacti-

vating currents: the potassium current IA from Panulirus

and the sodium current INa from Sternopygus . Since the

overall goal of fitting the data is to minimize the
variance between the observed data and the model

predictions, I used an F -test to compare the calculated

variances resulting from two different fits. The F -test

statistic is the ratio of the variances of the two fits,

which, assuming these variances have x2 distributions,

has Snedecor’s F -distribution (Beyer, 1987). This as-

sumption is valid if the fits are reasonably good, but

becomes less so if the fits are bad and the residues are
not Gaussian. Nonetheless it is a reasonable compara-

tive measure of the goodness of two fits. In what

follows, ‘better’ means a statistically significant differ-

ence in the variance using an F -test at the 5% level.1 http://www.netlib.org.
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3.1.1. Results for IA

The IA data were from the pyloric dilator (PD) cell of

the stomatogastric ganglion in Panulirus interruptus .

The cell was treated2 to block as much of the other

currents and synaptic transmission as possible. The

voltage-clamp protocols, and the recorded currents are

shown in Fig. 1. In order to remove any of the remaining

potassium delayed rectifier current, IK, from the re-

cords, additional protocols identical to those in the inset

of the top panel of Fig. 1 but lacking a pre-step were

also performed. Such protocols do not remove the

inactivation of IA and therefore represent only the

remaining IK current. The currents from these protocols

(which were very small) were subtracted from the

currents obtained from the other protocols. The sub-

tracted resultant currents are displayed in Fig. 1.

The parameter values obtained from these data using

the usual disjoint method and NEUROFIT are dis-

played in Table 1. Since the disjoint method does not

determine an estimate for Erev, its value was fixed at �/

86 mV (a typical value for pyloric cells in the STG, Baro

et al., 1997) when using NEUROFIT to ease compar-

ison of both methods. Some remarks about the model

specifications, that is, values of p , nh, and nnonh , given in

Table 1 are in order. I tested values of p from 1 to 10.

For the disjoint method, although increasing p by one

always reduced the variance in the fit to the steady-state

activation curve and the rising phases of the currents,

this improvement was not statistically significant. This is
not surprising since fitting steady-state curves to peak

currents is not a good way to estimate p (Willms et al.,

1999). For NEUROFIT, increasing p by one gave a

better overall fit up to p�/4. I decided to use p�/3 since

it was a reasonable value for both methods and is

historically a commonly used value for IA. For the

disjoint method, setting nh to two was better than one,

but three was not better than two. For NEUROFIT,
incrementing nh by one made the fit better, up to nh�/3.

However, the values for nh�/2 are displayed in the table,

for ease of comparison. The data do not have any non-

inactivating component, so nnonh was set to zero.

(Setting nh to two and nnonh to one in NEUROFIT

resulted in a fitted value for f3, the fraction of non-

inactivating channels, of zero.) Table 1 thus compares

essentially the best fit from the disjoint method with a
good, but not the best, fit from NEUROFIT.

Using the two sets of parameter values in Table 1, the

electrical currents of the cell under the voltage-clamp

protocols can be re-constructed. Some of these re-

constructions are shown in Fig. 2 (only a few are shown

to prevent the figure from being too cluttered). It is clear

from these figures that NEUROFIT out-performs the

disjoint method and does a better job at fitting the data.
The difference in the variances of the two fits (excluding

the first 5 ms of the traces which are contaminated by

noise and were not used in the fitting procedures) was so

large, it was easily statistically significant for the F -test

at even the 0.1% level.

3.1.2. Results for INa

The INa data were from an electrocyte cell of

Sternopygus macrurus . The cell was treated with TEA
to block potassium currents and was bathed in saline in

which NaCl was replaced with sodium methyl sulfate to

reduce the chloride level of the saline, thereby reducing

the passive leakage. The remaining leak current was

estimated from the traces after the sodium current had

inactivated and this was digitally subtracted from the

data. The voltage-clamp protocols, and the recorded

currents (after leak subtraction) are shown in Fig. 3. The
capacitive current dominates the first half millisecond of

the trace and this portion was excluded in the fitting

procedures. Voltage steps were in 5 mV increments from

�/40 to �/90 mV. The reversal potential for this cell is in

the range 50�/60 mV (McAnelly and Zakon, 1996) so

voltage steps above this level should elicit a positive

current. However, in this experiment, the cell was not

well clamped at high depolarizations, that is, the actual
membrane voltage did not achieve the command voltage

and/or was not sufficiently constant near the start of the

trace. The data in Fig. 3 show that only the upper three

2 10�7 M tetrodotoxin (TTX), 5�/10�6 M picrotoxin, 2�/10�2 M

Fig. 1. Voltage-clamp experiments on a PD cell of P. interruptus .

Recorded IA from varying step potential experiments (top panel), and

from varying pre-step potential experiments (bottom panel). Insets:

voltage protocols.
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voltage traces, corresponding to steps to 80 mV and

greater, gave a positive current. For this reason, only
traces with voltage steps below 60 mV were used in the

fitting procedures.

The parameter values obtained from these data using

the usual disjoint method and NEUROFIT are dis-

played in Table 2. The reversal potential for the disjoint

method was set to 59.6 mV being the optimal value

obtained by NEUROFIT, and the number of activation

gates was set to p�/5 since NEUROFIT found this to be
best. A single inactivation time constant was used.

The most striking difference between the two sets of

parameter values is the estimate for gmax; the disjoint

method gave 53 mS but NEUROFIT gave 211 mS. This

large difference is due to the fact that the disjoint

method does not take into account the simultaneous

nature of the activation and inactivation processes, a

deficiency which is relatively minor when the time
constants for the two processes are widely separated as

in IA above, but which is drastically damaging when the

two processes occur at nearly the same rates as for INa.

Fig. 4 shows a few of the electrical currents re-

constructed from the parameter values of Table 2. The

substantial under-estimation of gmax by the disjoint

method is immediately apparent in this figure where

the amplitude of the disjoint re-constructions are about

a factor of three too small. The time constants of

activation found by NEUROFIT were mostly larger

than those obtained by the disjoint method, while the

time constants of inactivation were mostly smaller.

Another notable difference in the two fits is the values

of V2m and sm where the disjoint method has a very

shallow steady-state curve shifted to the left compared

to NEUROFIT. This is likely due to the fact that the

steady-state curve for this data is non-symmetrical and

is not well fit by a Boltzmann function of the form Eq.

(6); a more general model for this data may be

appropriate. The overall fit obtained by NEUROFIT

for this current is not quite as good as that obtained for

IA but the improvement over the disjoint method is even

greater.

Table 1

Estimated parameter values for A-current of the PD cell

Disjoint NEUROFIT

Model specifications

p 3 3

nh 2 2

nnonh 0 0

Other parameters a

Erev �86 �86

gmax 0.46 0.48

f1 0.57b 0.49

V2m �50.9 �45.3

sm �20.9 �11.6

V2h �69.6 �69.4

sh 5.2 4.8

Voltage (mV) Disjoint NEUROFIT

tm /th1
/ /th2

/ tm /th1
/ /th2

/

Time constant parameters (ms)

40 3.0 113 703 3.0 113 728

30 3.3 118 685 3.4 101 667

20 3.7 128 658 3.6 92 575

10 4.1 133 649 4.6 72 506

0 4.5 115 510 5.3 61 416

�10 5.3 119 504 6.5 58 372

�20 6.3 112 485 7.9 66 332

�30 8.7 107 407 10.0 95 294

�40 16.0 142 348 12.3 220c 220c

a Units for these parameters are mV except for gmax which has units mS, and f1 which is dimensionless.
b Different values of f1 and f2 are estimated for each voltage level in the disjoint method. The value for f1 reported here is an average of the values

obtained from all the traces from the varying step protocol except the �40 mV step which produced almost no signal. The range of values for f1 was

0.46�/0.71.
c The current trace for the step to �40 mV did not have a sufficiently large signal for the NEUROFIT algorithm to discern two distinct

inactivation time constants.
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3.2. Convergence properties

Here I analyze the size of the convergence region, that

is, the maximum distances the initial values for the

parameters can be from the ‘true’ values and still have

the non-linear algorithm converge to a reasonably
accurate solution.

The convergence of the algorithm to a solution and

the accuracy of that solution will depend on several

factors. The degree to which the model’s form accurately

reflects the behavior of the ion channels and the amount

of noise in the data will of course have significant

effects. Further, since the model is non-linear and the

algorithm essentially approximates this non-linearity,
both the true values and the initial values of all of the

parameters will affect the convergence of each para-

meter. Thus, even in the absence of noise, the conver-

gence regions will in general be different for data

Fig. 2. Re-constructed current traces for the data from Fig. 1 (gray

lines) using parameter values obtained by the disjoint method (dashed

lines) and by NEUROFIT (solid lines). Top panel: varying step

protocols, steps to �/30, �/10, 10, and 40 mV. Bottom panel: varying

pre-step protocols, pre-steps to �/60, �/70, and �/100 mV.

Fig. 3. Voltage-clamp experiments on an electrocyte cell of Sternopy-

gus . Recorded INa from varying step potential experiments (top panel),

and from varying pre-step potential experiments (bottom panel).

Insets: voltage protocols.

Table 2

Estimated parameter values for INa of the electrocyte cell

Disjoint NEUROFIT

Model specifications

p 5 5

nh 1 1

nnonh 0 0

Other parameters a

Erev 59.6 59.6

gmax 53.3 211.0

V2m �48.1 �33.3

sm �25.7 �7.15

V2h �48.4 �49.3

sh 7.21 5.56

Voltage (mV) Disjoint NEUROFIT

tm th tm th

Time constant parameters (ms)

55 0.22 2.56 0.25 2.27

50 0.22 2.36 0.40 1.61

45 0.24 2.16 0.46 1.39

40 0.25 2.03 0.49 1.27

35 0.26 1.85 0.51 1.19

30 0.27 1.68 0.52 1.13

25 0.28 1.54 0.53 1.08

20 0.29 1.39 0.54 1.03

15 0.31 1.28 0.54 0.99

10 0.31 1.15 0.59 1.00

5 0.33 1.05 0.56 0.93

0 0.35 0.99 0.58 0.90

�5 0.37 0.95 0.60 0.88

�10 0.40 0.94 0.61 0.87

�15 0.42 0.93 0.62 0.87

�20 0.45 0.96 0.61 0.90

�25 0.46 1.00 0.56 1.00

�30 0.45 1.08 0.46 1.24

�35 0.42 1.23 0.29 1.91

�40 0.38 1.46 0.29 1.69

a Units for these parameters are mV except for gmax which has units

mS.
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representing models with different ‘true’ values of the

parameters. It is therefore impossible to make clear

statements such as ‘Provided the initial value for gmax is

within 40% of its true value the algorithm will converge

to a solution where gmax is within 5% of its true value’.

However, some idea of the size of the convergence

region can be obtained.

I generated simulated data for two types of inactivat-

ing channels: the crustacean potassium A-current, IA;

and a classical sodium current, INa. The true values of

the parameters used to generate these data are shown in

Table 3. For each current, two sets of voltage-clamp

experiments were simulated, the first with varying step

potentials and the second with varying pre-step poten-

tials. Five simulated data sets for each current were

generated by adding a different realization of Gaussian

noise to the model currents (standard deviation: 2.0 nA

for IA, 1.0 nA for INa). A portion of the data for one of

these realizations for each current type, and the gen-

erating voltage-clamp protocols, are shown in Figs. 5

and 6. The first 350 ms of the voltage step were fit for IA,

while for INa the first 5 ms were fit. The noise in each

trace was calculated by fitting a line to the regions 350�/

450 and 6�/10 ms for IA and INa, respectively.

The following tests were performed for both IA and

INa. Starting at the true parameter values, a direction in

parameter space was chosen at random and the initial

values for the parameters were systematically moved

outward along this direction to determine the method’s

convergence properties in that direction for each of the

five data sets. The total number of directions chosen was

16 times the number of parameters for the current (496

for IA and 384 for INa).
A test was labeled successful for a particular para-

meter if the final value obtained by the fitting algorithm

for that parameter was within 5% of its true value, that

is, if

j true value � obtained value

true value jB0:05:

I pooled all of the data from the five data sets and then,

for each parameter, attempted to find the largest

ellipsoidal region in parameter space (centered at the

true parameter values) such that all of the non-success-

ful tests lay outside this region. Thus the region

approximates a lower bound on the algorithm’s domain

of convergence for that parameter. Convergence will

almost always occur for initial value sets inside this
region, but, due to the highly non-linear nature of the

problem, will likely also occur for a substantial number

of initial value sets outside this region. The ellipsoidal

Fig. 4. Re-constructed current traces for the data from Fig. 3 (dotted

lines) using parameter values obtained by the disjoint method (dashed

lines) and by NEUROFIT (solid lines). Top panel: varying step

protocols, steps to 0, 20, 30, and 40 mV. Bottom panel: varying pre-

step protocols, pre-steps to �/50, �/60, and �/90 mV.

Table 3

True parameter values for simulated currents

IA INa

Model specifications

p 3 3

nh 2 1

nnonh 0 0

Other parameters a

Erev �86 50

gmax 3.9 5.3

f1 0.36

V2m �42 �8

sm �15 �10

V2h �67 �46

sh 6 4

Voltage (mV) IA INa

tm /th1
/ /th2

/ tm th

Time constant parameters (ms)

40 �/ �/ �/ 0.35 1.0

30 �/ �/ �/ 0.33 1.0

20 2.0 25 106 0.30 1.0

10 2.2 27 117 0.26 1.0

0 2.6 30 128 0.22 1.0

�10 3.0 34 139 0.18 1.0

�20 3.6 39 152 0.14 1.0

�30 4.4 45 171 0.10 1.2

�40 5.4 52 192 0.06 1.5

�50 6.7 60 213 �/ �/

a Units for these parameters are mV except for gmax which has units

mS, and f1 which is dimensionless.
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region in parameter space is a piece-wise ellipsoid with

semi-axes aligned along the coordinate axes, and is

defined by 2n semi-axis values, where n is the number of

parameters (the dimension of the space). An example of

such an ellipsoidal region in two dimensions is shown in

Fig. 7. In this figure, P and Q are parameters and the

ellipsoidal region is defined by the semi-axis values P�,

P�, Q�, and Q�. Distance is measured in units of

relative distance from the true parameter values. Fig. 7A

shows the region itself, while Fig. 7B shows a plot of the

semi-axis values for each parameter. It is this second

representation that I will use for the high-dimensional

parameter spaces.

In the determination of these domains of convergence,

I restricted the size of the semi-axis values to a

maximum of 2.0, which represents a 200% change in

the parameter value. In addition, I restricted some semi-

axis values to a maximum of 1.0 if values greater than

this were invalid (for example, the semi-axis values

measuring decrease of the time constants; time constants

must be positive and hence cannot decrease more than

100% from their true values). In practice, the initial

values (either obtained from ‘Quick Fit’ or entered

manually) should be well within this distance, for most

of the parameters.

Although in general there is one domain of conver-

gence (ellipsoidal region) for each parameter, my

determination of these domains, which was not com-

pletely thorough, resulted in only a small number of

distinct regions. That is, many of the parameters have

approximately the same domain of convergence. In

order to obtain more differentiation, a finer gradation

of distances along each direction would need to be used,

perhaps a larger number of directions would need to be
chosen, and more effort at finding the largest ellipsoidal

region, which is itself a difficult optimization problem,

would need to be exerted. Nonetheless, the results are

quite informative regarding the sensitivity of the data to

the various parameters, and the convergence properties

of the algorithm.

3.2.1. Convergence for simulated IA

For IA there were three distinct domains of conver-

gence as displayed in Fig. 8. The largest of these had

most semi-axis values around 0.5 indicating that as long

as the relative distances of the initial parameter values

Fig. 5. Simulated IA voltage-clamp data. Left panel: varying step potential experiments; right panel: varying pre-step potential experiments; insets:

voltage-clamp protocols.

Fig. 6. Simulated INa voltage-clamp data. Left panel: varying step potential experiments; right panel: varying pre-step potential experiments; insets:

voltage-clamp protocols.

Fig. 7. (A) Example ellipsoidal region in two dimensions with semi-

axis values P�, P�, Q� and Q�. (B) Semi-axis representation of the

region.
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were within about 50% of their true values, the algo-

rithm would converge successfully for the following

parameters: f1, V2m , V2h , sh , tm (20), . . ., tm (�/30), /

th1
(20); . . . ; th1

(�20); th2
(20); . . . ; th2

(�30): The sec-

ond largest region had semi-axis values around 0.2,

indicating that initial guesses needed to be within about

20% of their true values for successful convergence. The

parameters with this domain of convergence were: Erev,

tm(�/40), tm(�/50), th1
(�30); . . . ; th1

(�50); th2
(�50):/

It is clear that the algorithm successfully obtained

good estimates for most of the IA parameters even if the

initial guesses were well away from their true values. The

time constants at voltages where the current was barely

activated (for example, the traces in Fig. 5 correspond-

ing to voltage steps to �/40 and particularly �/50 mV)

were difficult to fit, however, this was not due to the

algorithm, but rather the lack of sufficient signal in the

data themselves.

The first inactivation time constant at �/30 mV,

th1
(�30); also had a small domain of convergence.

This is a manifestation of the fact that the signal at

this voltage level was also not sufficiently large to allow

a clear separation of the two time constants of inactiva-

tion. Indeed, fitting sums of exponentials with varying

weights is in general a highly ill-posed problem (Acton,

1990). For this model, the problem is not as ill-posed

because the weights (values of fi) are required to be the

same for each current trace. Nonetheless, as the number

of channel types, nh, increases, the problem becomes

more ill-posed and one should expect large standard

Fig. 8. Ellipsoidal domains of convergence for IA. The domains of convergence of the parameters for IA fell into one of three (top, middle, bottom)

domains shown here; shaded parameter names indicate the parameters for which the plotted domain applies. In each plot, the parameters are listed

horizontally and for each, a relative distance above and below the true value of the parameter is plotted. (The plots are scaled in order to see the

details near zero, hence some of the values are off the plots; these values were typically large or at the maximum distance.) If the initial values of the

parameters are within these ranges, the algorithm converges to within 5% (dotted lines) of the true value for the shaded parameter names.
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errors for the parameter estimates, and small domains of

convergence. (It should be noted that the disjoint

method obtains different weightings, fi , for each voltage

level and does not even attempt to obtain a consistent
weighting valid for all voltage levels.)

The domain of convergence for gmax was of moderate

size, and that of Erev was quite small. This is due to the

fact that there is some degree of degeneracy or trade-off

between these two parameters as seen in Eqs. (1) and (2).

If Erev is relatively distant from the voltage step levels,

small changes in Erev, will affect all traces to almost the

same degree, and therefore be equivalent to small
changes in gmax. This is precisely the situation for the

IA data, where Erev is �/86 mV but the current traces

with substantial signal are at voltage levels above �/20

mV. It is therefore sometimes necessary with such data

to obtain estimates of Erev, from other means and hold

that parameter constant in the fitting procedure to allow

an accurate estimate of gmax.

3.2.2. Convergence for simulated INa

For INa there were just two distinct domains of

convergence as displayed in Fig. 9. The largest of these

regions corresponded to the parameters

Erev, sm , V2h , sh , tm(40), . . ., tm(0), and th(40),. . .,
th(�/10). For this region, most of the parameters could

be initially about 200% larger than their true value and

the algorithm would still converge. The only relatively

small semi-axis values were those corresponding to

decreases in gmax and V2m , and those corresponding to

some of the time constants. The smaller region had most

of its semi-axis values within the 5% region indicating a

need for very accurate initial values. The parameters

with this domain of convergence were gmax, V2m ,

tm(�/10), . . ., tm (�/40), th (�/20), . . ., th(�/40).

For INa, the results were comparable with IA particu-

larly in that the time constants at voltages where the

current was barely activated and the signal to noise ratio

was very small, were the most difficult parameters to fit.

But even so, as seen in Fig. 9, the time constants would

generally tolerate a large initial over -estimate; it was the

under -estimates, particularly with the time constants of

activation, which caused failure to converge.
In contrast to IA, for INa, the parameter Erev, had a

large domain of convergence, that is, was easily esti-

mated. This is due mostly to the fact that the effect of

Erev on these data is clearly distinct from gmax, in that

the largest signal currents were at voltages relatively

near the reversal potential.

The fact that gmax and V2m had a small domain of

convergence for INa was due to a lack of sensitivity

between these parameters in these data. Only six of the

Fig. 9. Ellipsoidal domains of convergence for INa. The domains of convergence of the parameters for INa fell into one of two (top, bottom) domains

shown here; shaded parameter names indicate the parameters for which the plotted domain applies. See the legend to Fig. 8 for details.
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nine voltage steps generated a substantial signal since

the current was nearly completely deactivated at about

�/20 mV. The complicated interaction of a small value

for sm , and the various values for the time constants of
activation, coupled with essentially just six relevant data

traces resulted in a small domain of convergence for

these parameters.

4. Discussion

The two examples of real data in Section 3.1 illustrate

that NEUROFIT is substantially better than the disjoint

method at fitting a HH model to voltage-clamp data.

This success is due to the fact that NEUROFIT uses the

full current trace, that is, all of the data, rather than just

the peak currents and parts of the rising and falling

phases. Further, by fitting all of the data simulta-

neously, it obtains a consistent set of parameters, unlike
the disjoint method which obtains different weights, fi ,

for the multi-exponential inactivation at each voltage

level. The end result is a set of parameter values which

better reflects the information contained in the data.

The analysis in Section 3.2 shows that NEUROFIT

will converge to accurate estimates of most of the

parameters starting from any reasonable initial values.

It should again be emphasized that the ellipsoidal
regions determined in that section approximate a lower

bound on the domain of convergence, and initial guesses

outside this region will also, in many cases, result in

successful convergence. The linear ‘Quick Fit’ pre-

estimation feature of the software provides reasonable

initial values for the full non-linear fitting procedure.

It is still true that NEUROFIT is constrained by the

data set itself, and difficulties associated with its quality
or the lack of information in it will affect the fit. For

example, the time constants at voltage levels where the

current was barely activated and hence the signal to

noise ratio was small, had small domains of convergence

due to the fact that the data did not contain sufficiently

discriminatory information for these parameters. The

analysis in Section 3.2 also reveals some other inade-

quacies in standard voltage-clamp data.

. if the reversal potential, Erev, is distant from the
voltage step levels at which an appreciable current is

recorded, there is difficulty in distinguishing changes

in Erev from those of the maximal conductance, gmax;

. there must be a clear multi-exponential time course in

a sufficient number of the traces in order for a

consistent estimate of the time constants of inactiva-

tion, thi
; and the fraction of channels of each

inactivation type, fi , to be obtained;
. if the voltage-clamp apparatus is not successful in

depolarizing the cell precisely to the command

voltage or is unable to do so sufficiently instanta-

neously, due to, for example, the spatial extension of

the cell, electrode resistance, or other physical or

technological constraints, the recorded current will

not correspond to the analytic voltage-constant
solutions of the differential equations. The para-

meters most affected by this problem are Erev,

gmax, V2m , sm and the time constants at these depo-

larized levels;

. if the membrane time constant is the same order of

magnitude as the time constants of activation, the

rising phase of the current will be substantially

concealed by the capacitive surge leaving little data
from which to determine tm and p ;

. if there are a restricted number of voltage step levels

at which recordings are made or if they are not

sufficiently spread over the region of interest, the

ability to determine some of the parameters (notably

the half activation potential, V2m , and the activation

slope factor, sm ) will be limited.

No fitting algorithm will fully overcome these difficul-

ties as they are associated with a lack of (or erroneous)

information in the data set itself. Different experimental
protocols which yield more informative data are neces-

sary.

The fitting algorithm employed by NEUROFIT is not

dependent on the HH model. Indeed, I intend in the

future to generalize the software to allow fitting of other

models such as multi-state models or models with non-

symmetric steady-state curves.

NEUROFIT is easy to use and can obtain accurate
estimates for HH model parameters. Its use should

benefit the neurobiological community in fitting HH

models in a more rigorous and consistent manner to

standard voltage-clamp data.

Acknowledgements

The development of NEUROFIT was partially com-

pleted by Greg Ewing and Howic Kuo. The voltage-

clamp data for IA and INa were supplied by Ronald

Harris-Warrick, and Lynne McAnelly, respectively. The
comments of two anonymous reviewers were greatly

appreciated. This research has been supported finan-

cially by the University of Canterbury, internal grant

U6322, and the Royal Society of New Zealand, Inter-

national Science and Technology Linkages Fund, NZ/

USA Co-operative Science Programme, grants 99-CSP-

49-WILL and 01-CSP-44-WILL.

References

Acton FS. Numerical Methods That Work. Washington DC: Math-

ematical Association of America, 1990.

A.R. Willms / Journal of Neuroscience Methods 121 (2002) 139�/150 149



Baro DJ, Levini RM, Marshall TK, Willms AR, Cole Lanning C,

Rodriguez HE, Harris-Warrick RM. Quantitative single-cell-re-

verse transcription-PCR demonstrates that A-current magnitude

varies as a linear function of shal gene expression in identified

stomatogastric neurons. J Neurosci 1997;17:6597�/610.

Beyer WH, editor. CRC Standard Mathematical Tables, 28th ed. Boca

Raton, FL: CRC Press, 1987:536�/78.

Buchholtz F, Golowasch J, Epstein IR, Marder E. Mathematical

model of an identified stomatogastric ganglion neuron. J Neuro-

physiol 1992;67:332�/40.

De Schutter E, Bower JM. An active membrane model of the cerebellar

Purkinje cell. I. Simulation of current clamps in slice. J Neurophy-

siol 1994;71:375�/400.

Destexhe A, Mainen ZF, Sejnowski TJ. Synthesis of models for

excitable membranes, synaptic transmission and neuromodulation

using a common kinetic formalism. J Comput Neurosci

1994;1:195�/230.

Goldman L. Quantitative description of the sodium conductance of

the giant axon Myxicola in terms of a generalized second-order

variable. Biophys J 1975;15:119�/36.

Guckenheimer J, Gueron S, Harris-Warrick RM. Mapping the

dynamics of a bursting neuron. Phil Trans R Soc Lond B

1993;341:345�/59.

Harris-Warrick RM, Coniglio LM, Barazangi N, Guckenheimer J,

Gueron S. Dopamine modulation of transient potassium current

evokes phase shifts in a central pattern generator network. J

Neurosci 1995;15:342�/58.

Hodgkin AL, Huxley AF. A quantitative description of membrane

current and its application to conduction and excitation in nerve. J

Physiol 1952;117:500�/44.

Luo CH, Rudy Y. A dynamic model of the cardiac ventricular action

potential I. Simulations of ionic currents and concentration

changes. Circ Res 1994;74:1071�/96.

Marom S, Levitan IB. State-dependent inactivation of the Kv-3

potassium channel. Biophys J 1994;67:579�/89.

McAnelly L, Zakon HH. Protein kinase A activation increases sodium

current magnitude in the electric organ of Sternopygus . J Neurosci

1996;16:4383�/8.
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Tóth TI, Crunelli V. A numerical procedure to estimate kinetic and

steady-state characteristics of inactivating ionic currents. J Neu-

rosci Methods 1995;63:1�/12.

Willms AR, Baro DJ, Harris-Warrick RM, Guckenheimer J. An

improved parameter estimation method for Hodgkin�/Huxley

models. J Comput Neurosci 1999;6:145�/68.

A.R. Willms / Journal of Neuroscience Methods 121 (2002) 139�/150150


	NEUROFIT: software for fitting Hodgkin-Huxley models to voltage-clamp data
	Introduction
	Methods
	Hodgkin-Huxley model
	Fitting procedure

	Results
	Examples
	Results for IA
	Results for INa

	Convergence properties
	Convergence for simulated IA
	Convergence for simulated INa


	Discussion
	Acknowledgements
	References


