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Number of Samples Needed For M odd Sdection With Confidence
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Abstract

A common measure used to quantify the similarity of two modeds is the Kullback-Leibler diver-
gence, computed from a true model to an atemative modd. We propose a different measure: the
number of samples needed to correctly reject the dtemative modd with a given confidence leve
(eg. 95%). Our method works as follows: (1) we simulate samples from the true model, (2)
for each sample, we compute a log-likelihood ratio (3), we bootstrap and sum the log-likelihood
ratios—when this sumis positive, we sdect the true model, (4) using simple linear regression, we
determine the number of termrs (i.e. number of sanmples) needed to make the desired quantile (eg.
5%} fdl a zero. We have tested this method on t-distributions of different degrees of freedom and
have confirmed that it gives reasonably consistent results. However, we plan to apply this method
to Markov chains, eg. used for sports statistics like tennis, volleybdl, and basebadl. For these ap-
plications, it may be desirableto have a measurethat is essier to interpret than the K ul |l back-Leibler
divergence. How many innings are needed to fasify the modd of the Yankees when simulating a
modd of the Orioles?

Key Words: Modd sdection, likdihood ratio test, Akai ke informetion criterion, Kullback-Leibler
divergence

1. Moativation

When working with two or nore probabilistic modes, you may want to quantify ther
similarity. Specifically, when observing simulations of one modd, can you essily tell that
the simulaions do not come from another model? Or do only subtie differences between
the models meke this discernment difficul t?

My favorite example invol ves basebal. What if you had score cards recording, play
ater play for many games, what bases had runners, and how many outs had occurred.
Could you tell which tears were up a bat? In practice, there will be many uncontrolled
factors, so if you require a high degree of certainty, you will only be able to disinguish
between two tearrs if they are substantidly mismatched. On the other hand, in theory, if
the teams playing are nodds of teams, obeying precisdy defined and known probability
laws, and if the models meke different, even slightly different, predictions, you can meke
the choi ce confidently. | ndeed, you can have as great a chance as you want, short of being
absol utdy certain, of choosing the right team, provided you have enough data[2]. But how
nmuch data suffice for the confidence you demand?

Once you derive a nodd of each team from game records, you can ask yoursdf, for
example how similar is the modd of the our home team, the Bdtinore Oridles, to the
mode one of thar rivals, the New York Yankees. (Batimore hosted the J oint Statistical
Medtings in 2017.) How many Baltimore-at-bat haf-innings would you need to simulate
to correctly rgject the statement that the model of the Y ankees generated the simulaions,
and getthis answer right at | east 95% of thetime (or some other specified confidence leve)?
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2. Basaball asa Markov Chain

Basehd | is often modeled as a Markov chain [5, 1, 4], where each haf-inning proceeds
through a number of states. The states record whi ch bases haverunners, and how many outs
haveoccurred. There are8 possible combinati ons of runnerson base (labded: 0, 1, 2, 3, 12,
13, 23, 123), and 4 possible numbers of outs (labded: blank, X, XX, XXX). Specificaly,
the statelabd 0 indicates empty bases with no outs, whereas the state |abd 123X X indicates
loaded bases with two outs, ec. All states with three outs are combined into a single
absorbing gate: XXX, which signifies the end of the half-inning. Thereexist atota of 25
states and atotd of 600 (equaing 24 x 25) concelvable transitions (no transitions happen
fromthe XX X gate). Wenote that meny of thesetransitions remain impossible, by therules
of baseball, such as, for example, going from bases empty with two outs, to bases empty
with one out, i.e 0XX:0X. Using a recursive algorithm savvy to the rules, | counted 296
dlowable transiti ons between states, and 304 illegd ones. Of the 296 adlowabletranstions,
only 272 occurred at lesst once in the 2011 Major League season— 24 never occurred (see
Figure 1). For example, in 2011 no team underwent the transition 1X:1X even though it
could have occurred, within the rules of the game. Had a team undergone this transition,
the batter would have advanced only to first base, while the runner on first would have
scored—clearly an unusud scenario, but notimpossible: both 1:1 and IX X:1XX did occur
in 2011 Major League play.

We can then define a 24 x 25 malrix of transition probabilities, with entries {pi; }.
Specificaly, pij is the probability that the game will transition to state , assuming it finds
itsdf instate i, just prior. To specify a modd of a basebdl team we must snply specify
these 600 transition probabilities. However, 304 of these entries must be zero, by the rules.
The rest of the probabilities will fall between 0 and 1—including perhaps dozens more
zeros for any given teem. Twenty-four additiona constraints (sums of the entries in each
row equd 1) stem from the stipulation that, from each of the 24 transient states (i.e. other
than XX X), the game (or half-inning) must go on with a single new state.

To determine the va ues of these parameters for each team, the simplest method uses
the so-called maxinumlikelihood estimates (MLES) [3]:

nunmber of transitions mede fromi to
totd nunber of transitions made fromii

In calculating the MLES for a particular team, use game records for that team My team
nmode s come only from the game records of the team batting at horme. | mede this choice
to meke the modds as different as possible. Even in the Maor Leagues, bdlparks differ
substantiadly, and the home fidd can have a significant effect ontheplay. These park effects
add distinctiveness to the nodd s that also comes from the differences in the team at bat
Fixing the homefidd also reduces variability in the data from gameto game.

Unfortunately, baseball models based on MLESs have s gnificant drawbacks, especidly
when we consider the mode s together. Though some transitions are commmon, meny others
are not. Invariably, some of the more unusud transitions will happen for one team, in one
year, but not for the other. As a consequence, MLE modds will meke some transitions
possiblefor oneteam, but not for the other. For example, the uncommon transition 23X:3X
happened once in 2011 for the Batinore Orioles, but never in 2011 for the New York
Yankees. Thus, if you ever see the 23X:3X transition in along series of haf-innings, you
can immediately rgject, with absolute certainty, the statement that the 2011 MLE modd of
the Yankees simul ated the data. This autometic rejection mekes the correct selection of the
Orioles easy for a reason that depends more on the noise in the data than on the tearms under
study. For this reason, the interpretation of our results, below, will be made in the context
of this rather unfortunate behavior of the MLEs for basebd |.

MLE of pj =
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Figure 1. The 272 basebd| state transitions that occurred throughout the 2011 Mgor
League season, aranged randony, and sized according to their frequency of occurrence.
Additiondly, there were 24 transiti ons that were possi ble, according to therul es of basebal |,
but that never occurred in 2011 Maor League play (not shown).
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Rare Half-Innings
0:1:000000X 0 & °X§%§gx XX

0:1: 1X 1 XX XXX

0:0X 8501 XX LK

0:0X:0XX: XXX

Figure 22 Most comnon haf-innings, as predicted from transition probabilities fit with
2011 M gor League season data, arranged randomly, and sized according to predi cted fre-
quency of occurrence. Half-innings with predicted probabilities less than 0.01 are lumped
together as “Rare HaAf Innings. With no cap on the score, there are infinitely many such
rare haf innings.
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3. Deciding Between M odds

Basehd | presents one exanple beow, we introduce another. Our calculations work for
any type of modd, provided (1) you can simulate the true modd to generate sanples, and
(2) you can caculate the likdihood of each sample, both for the true nodd, and for any
atemative nodd under consideration. The reative vaues of these likdihoods determine
which modd you deem correct. Of course, with these caculations, you know in advance
which modd is correct, but knowing this fact allows you to caculate how meny samples
you would have needed to be confident, if you did not aready know the answer.

Each baseba| sample consists of the play-by-play records from a haf-inning for the
nmode team at bat. To create this sample with a simulation, start with bases empty and no
outs (the O state) then successively apply the appropriate transition probahilities to “throw
the dice” to seethe succession of states, until reeching the end of the ha f-inning (the XXX
state).

Itiswdl knownthat inthe history of Mg or League play, no player has ever consistently
batted over .500, meaning that nost plate appearances, for dl batters, have led to an out
Fromthisfact, we can guess that, throughout M g or League history, the most common half-
inning has been the one in which there are three outs in a row: 0:0X:0XX:XXX. Indeed,
simulations with the transition probahilities (combined for al 2011 Maor League teans,
home and away) predict 0:0X:0XX:XXX for 31% of the haf-innings. Individua teans
will have different percentages for this occurrence, higher or lower, depending on the skill
of their batters. True, this most common outcome does not represent a mgjority of dl half-
innings, but the next most conmmon ha f-inning, 0:0X:0XX:IXX:XXX, occurs only 8% of
thetime.

Based on the 2011 data, there are only 9 distinct haf-innings which have probabilities
grester than 0.01 (predicted to occur more than 1% of thetime, Figure 2). | cal these non-
rare half-innings; the rest | cal rare half-innings. But the probabilities for the non-rare
haf-innings only sum to 0.56, which predicts a rare haf-inning 44% of thetime. As a
group, rare half-innings are not particularly rare, but each one occurs less than oncein 100
haf-innings. How is this statement consistent with redlity? Redize that, with no cap on
the score, there are infinitel y many possible ha f-innings; their probabilities sumto exactly
1inan infinite convergent series. Necessarily, these probabilities tail off to keep the sum
finite, but still, the fact that individua half-innings have such low probabilities is mede up
for by the fact that there are so many of them

For asecond exampl e, weusethe student t-distribution. | nstead of 600 transition proba-
bilities, t-distributi ons havea single parameter: the degrees of freedom. Our true modd will
be at-distribution with 5 degrees of freedom, t(5), whereas our aternativermodd will beat-
distribution with infinite degrees of freedom, t{ e ), a0 known as the standard Normdl dis-
tribution, N(0O, 1). Analogous to asingle haf-inning in baseball (such as 0:0X:0XX:XXX),
each sample froma t-distribution is a single number on the real line, either postive, neg-
dive or zero (such as -0.6576941). Consequently, unlike in basebd| with its discrete
haf-innings, for the t-di stributi ons, the sampl es occur on a conti nuUM—in one dimension.
As with baseball, the next step grasps the likdihoods of the different possibilities. For the
t-distributions, the snplicity of the sample space dlows you to plot the likelihood (on the
veatica axis) against the sanple (on the horizontal axis) which shows the graph of the so-
caled probability density function (Figure 3). This graph for N(O, 1) is just the familiar
bal curve the graphs for the other t-distributions appear nearly indisti nguishable from the
onefor N(0, 1), but they are dightly warped bells, as described below.

For dl t-distributions, the most likdy sanple is 0, which appears as the pesk of the
bel. Away from 0, the likdihood drops off into symmetric tails that extend to infinity
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Figure 3: Sdecting amodd with only one data point: the probability density functions of
the t(5) and N(O, 1) distributions. Assuming the t(5) distribution generates the data point,
the comrect sdlection will be made only if this data point fals in the tails of the distribution
(shown with green shading), otherwise, more likdy, the incomrect sdection of N(O, 1) is
mede (shown with yellow shading). |mproving the odds of a correct sdection requires
nrore data poi nts.
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in both directions. Just as in basebdl, where the probabilities of the different possible
haf-innings sum to 1, the probability density of a t-distribution integrates to 1 (i.e area
under the bdll equas 1) over the whole range of possible samples. Because the range of
possible t-samples has no limit, thetails nmust drop off precipitously to keep the area below
them finite, just as the probabilities for haf-innings with higher and higher scores must
similarly drop off. A key pointis thet this drop off occurs dower for t(5) than for N(O, 1):
t-distributions have heavier tails, the smaller their degrees of freedom. Ina similar fashion,
in basebdl, the “tail” (by which | mean: the probabilities of half-innings with higher and
higher scores) drops off slower for better teans. But higher probability inthe “tail(s)” must
be compensated for by |ower probability in the “center.” Thetop of the bell is lower for the
heavier-tailed t(5), thanitis for N(O, 1). Likewise, the lowest scoring half-innings, such as
0:0X:0XX:XXX, areless likely for better teans.

To decide between modds, usng one sample, you nake the choice based on which
nmode has a higher likdihood, at the sample. For thet-distributions, if the sampleisin one
of thetails, you pick (5); if thesampleis in the center, you pick N(0, 1). The intersections
of the two modd’s probability density functions determine the boundaries of the regions
where the different models are sdected. For basebd |, you will tend to pick a better team
if the haf-inning’s score is higher, and a worse team if the score is lower, dthough the
judgement based on likdihood is often more subt e than the one j ust described.

In many cases, based on one sanple, the answer will be wrong, most of the time.
Indeed for dl t-distributions, including t(5), nost samples appear near the center (top of
the bell), so t(5) will be rgected in favor of N(O, 1), with one sample, most of the time,
even if {(5) is the true modd . Likewise, good teans do often get low scoring half-innings.
If this conmon occurence happens when choosi ng between teams with asingle ha f-inning,
agood team may be deemed | ess likdy than a worse team to have produced its own data.
It takes meny samples, incdluding occasiond raritiesin thetails, to fill in the histogram and
meke the correct choice, confidently.

How do we conpute likdihood? For t-distributions, likdihood is the height of the bell
a the sample, given by formulas (for the probabi lity density function) easily found online.
In this respect, baseball is simpler: the likdihood of a hdf-inning is the product of the
probabilities of dl its transitions. Inall cases, to compute the likdihood of an ensamble of
independent sanmples, you conputethe product of thelikeihoods of theindividud samples.
Products appear because of the independence (or, in the case of transition probabilities, the
conditiona independence) of the events under consideration. Note that, in working with
many samples, you should, instead, work with the log-likdihoods, otherwise the numbers
will get too small for a computer’s floating poi nt arithmetic to hand e accuratey.

Weare interested in the rel aive likelihoods between the two noddls, and we sdect the
nmodd with the grestest likelihood. This seection goes by the name likelihood ratio test
andinour situations, it is equivaent to making the decisi on based on the much championed
Akaike infornmation criterion or AIC. Why are the two equivdent? The fornula for the
AIC differs only by adding a term that adjusts for bias thet inevitably occurs when the
nodd er makes the sd ection with the same data used for fitting the models [2]. We meke
our selection with data simul ated after we fix the parameters, so in the formula for AIC,
there are no fitted parameters, which inplies that the two methods agree.

As suggested by the namelikelihood ratio test, we use ratios. Specificdly, after gener-
aing samples from the true modd, we sdect modd s based on the ratio of the product of
true-nodd likdihoods, over the product of atemative-modd likdihoods (both using the
same true-modd samples). |If this quantity is greater that 1, we choose the true modd;
otherwise we choose the dtemative modd . After taking | ogs, these quoti ents and products
simplify to the sum of the log-likelihood ratios of the single samples. When this whole
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Table 1: The bootstrap table: each entry is the sumof log-likeihood ratios computed from
independent sampl es bootstrapped from a large population (size 200,000) drawn from the
true nodd, t(5). A single log-likelihood ratio is the log of the quotient of the probability
density of the true modd at the sampl e, to the probability density of the alternative modd,
N(O, 1), a that same true-modd sample. The sum of a number of these va ues, for an
ensemble of i ndependent sanples, is the log-likelihood ratio of that ensemble of sanples.
Each entry of the k™ colunn of the table contains the sum of k of these log-likelihood
ratios. A positive entry indicates a correct sdection of t(5) over N(O, 1), based on the
corresponding ensarble.

Oresingle

Sumof 2

Sumof 3

Sumof 4

Sumof 5

Repsdtition 1
Repstition 2
Repstition 3
Repdtition 4
Repdtition 5
Repetition 6
Repstition 7

-0.0619845
-0.0966445
-0.0541549
-0.0842683
-0.0526431
-0.0858160
-0.0508892

0.8031872
0.0845291
-0.1628995
0.7632357
-0.1469163
1.0636336
-0.1506010

0.0447267
-0.1887769
-0.2364334

0.4930037
-0.2068822
-0.0271214
-0.2433817

0.2339618
-0.2913085
1.6543063
-0.2023973
2.0281977
-0.2683411
-0.2727284

-0.3907877
5.2309346
1.2374765

-0.3325500
0.1084606

-0.3006797

-0.4206254

sumis gregter than zero (i.e 1og(1)), we choose the true modd; otherwise, we choose the
atemative modd.

The mean of the sngle-samplelog-likelihood ratios is an unbi ased estimate of the so-
caled Kullback-Leibler divergence fromthetrue model to thedternative nodd [2]. While
such a Monte Carlo estimete can be ether positive, negative, or zero, the actud vaue of
the Kullback-Leber divergence (defined as the expected log-likelihood ratio) aways re-
nei ns nonnegative—and positive as long as the modds meke different predi ctions (known
together as the Gibbs inequality). From this result, the central limit theorem, and a finite
variance assumption, we can be sure we will, with any level of confidence short of cer-
tainty, sdlect thetrue modd, with enough samples, provided the two modd s make different
predictions. In other words, our test is consistent [2]. For two baseball models, requiring
that mode s meke different predictions demands that at | east one transition probabil ity must
be di fferent.

4. Computing The Samples Needed

| use a brute force Monte Carlo technique. Specificaly, | compute a table of sums of
log-likelihood ratios (Table 1). The first column contains single log-likelihood retios; the
second contai ns suns of two; the third contains suns of three; and so on. Theentriesinthe
table derive from i ndependent random samples, and independence holds across rows, as
wdl. For largetables, the computationa requirements can be prohibitive, so to economize,
| compute a smaller number of sanples than needed, together with their log-likdihood ra-
tios, then use a bootstrap (random resampling with replacement) to fill inthetable. This
procedure introduces a bias, but one controlled by adj usting the nunber of samples avail-
able in the bootstrap population.

Oncel compute thetable, | can compute the proportion of entries in each column that
are positive (each indicating a correct sdection, Figure 4). The colunm number indicates
how meny samples are used for the sdection, so the column nunber for which this pro-
portion crosses the chosen confidence leve (e.g. 0.95) should be my answer. With finitey
many samples, however, this crossing is not well defined because the proportion varies ran
domly, and in a way thet varies across columns. As a result, there appears a region, which
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Figure4: The proportion of correct sel ections (vertica axis) indicated by the proporti on of
posi tive va ues wi thi neach colunm of a “bootstrap table” (with 1000 rows and 250 col uns,
bootstrapped from a popul aion of size 200,000, see Table 1). The proportion of correct
sdections is plotted agai nst the sammple size (horizontal axis; varying across columns of the
table). Each proportion correct is necessarily a multiple of the reciproca of the number of
rows in thetable. As the proportion correct crosses the value of 0.95, (boundary between
ydllow and green shading), we deemthe confidence leve acceptable.

2568



JSM 2017 - Section on Statistical Computing

L] ae
o: .“
5.0- o9 .
$%e.
L)
Y . *° 2
ke %,
- L)
& L
el L]
8 qa " .
= 0
2 o
= 25- .
| % e )
g’ o.o -
- - ® 9 L]
[ ]
(o]
Q i .0‘ .;
= e
8 X
@ . 'R °
[os More than 95% confident 1o 0
= 0.0 [ ® o
E N "'. -
b ° %_ Less than 95% confident
L]
AC ..’.
e %
*% :o ¢
‘. o ¢ o .QQ —
° ‘.0 L L]
S
[ ]
-25
0 50 100 150 200 250
Sample Size

Figure5: Thefifth percentile of thelog-likdihood ratios (vertica axis) withineach colunm
of a“bootstrap table” (with 1000 rows and 250 columns, bootstrapped froma population of
size 200,000, see Table 1). Thefifth percentileis plotted against the sampl e size (horizonta
axis; varying across coluns of the table). The fifth percentil e crosses zero (the boundary
between the ydlow and green shading) a the same place where the proportion correct
crosses 0.95, and where we deem the confidence leve acceptable (green shading, see dso

Figure 4).
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Figure 6: The region of interest (zoom+in of Figure 5). | define the region of interest to
include the |ast sample before the first zero-crossing, the first sample after the last zero-
crossing, dl samples in between, but nothing dse. The bluelineis the linear | east-squares
regression line for thedata in this region, the dark green arow poi nis to the esti mete of the

number of samples needed for 95% confidence.
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Figure7: Distribution of the estimator of the number of samples needed to correctly rgject
N(O, 1) in favor of the correctly specified t(5) modd. Shown are violin and box plots for
two aternative methods of computing the estimete. Left: simple linear regression on the
fifth percentile of thelog-likelihood ratio. This procedure, shown in Figure 5, occasionaly
produces extreme outliers. Right quantile regresson with the R function quantreg::rg()
applied to the same data.
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| call the region of interest, where the desired crossing occurs many times.

My first solution zoons inonthis region of interest and perforns a linear regression on
the proportion correct to pinpoint an estimate where this proportion crosses the confidence
level. But this proportion nmust be a multiple of the reciproca of the number of rows in
the table. Unfortunately, this discretization nekes for poor regresson. So instead, | now
work with quantiles (Figure 5). For example, the proportion correct crosses 0.95 a the
same place where the 5t percentile of the log-likelihood ratio crosses O (i.e log(1), the
threshold for the sumof thelog-likd ihood ratios to indicate a correct selection). As before,
the quantiles are random in a way thet varies across column, so again, we must zoomin
on aregion of interest and performa regression (Figure 6). But the quantiles are no longer
discrete and the regression perfons better.

| have tried both simple linear regression (on the quantiles, with the R conmand Im())
and quantile regression (directly on the entries of the bootstrapped table, with the R com-
nend quantreg::rq()) both using defaul t arguments, where possible. A careful reading of the
documentation does revea fundamental differences between these two procedures, how-
ever, there was there was not a substantia difference in the spread of the estimates (Figure
7). On one hand, the Im() command occasiondly fails, producing extreme outliers, or
even nonsensica results (negative va ues for number of sanples needed, not shown). The
dtemative, quantreg::rg() performed better in this regard, however the computations take
amost twiceas long. | ndeed, using quantreg::rq() requires duplicati ng theintermediate step
of caculaing the quantiles—once to conpute the region of interest, and once to perform
the regression. Using Im() is nore economicd, in this regard.

5. Results

Using the quantreg::rg() function, | caculate thet it takes 128 + 1 samples from the t-
distribution, with 5 degrees of freedom, to rgect, with 95% confidence, the statement that
these sanples come from the standard normal distribution (mean = standard error, aver-
aging 100 estinetes, shown in Figure 7). There was only a slight difference with the Im()
function: 125 + 2, (same number of estinmetes, shown in Figure 7). After diminating the
two extreme outliers from the di stri bution, the result changes to 126 + 1 edtinates.

On the other hand, | caculate that it takes 30 = 1 haf-innings, simulated from the
MLE modd derived fromthe 2011 Baltimore Oriol es, batting at home, to rgect, with 95%
confidence, the statement that these haf-innings were sampled from the 2011 New York
Yankees MLE nmodd.

The computations for the t-di stri buti ons, each giving a =1 range for the estimates, took
6 minutes and 12 minutes on a MacBook Pro, for, respectivdy, the Im() method, and the
quantreg::rg() method. The duration of the baseball computations fdl within thet same
range. The baseball calculati on required averaging only 6 estimates, but each estimate took
longer to compute—thetotd time elgpsed was 11 minutes.

6. Discussion

One reason basebal | teams are essier to distingui sh than t-distributions i nvol ves the above
mentioned properties of the MLE. Specificaly, inasimulaion of 100,000 Balti more-at-bat
haf-innings, it was discovered thet just under 2% had not ever occurred for the Yankees
while batting in their New York home stadiumin 2011. If oneof these haf-innings occurs
in a set of Batimore-at-bat samples, the sdection isimmediatd y mede for the true modd,
the Orioles. Atleast one such haf-inning is expected in approximetay 45% of sequences
of 30 Bdtimore haf-innings, making the correct sdl ection substantially easier. A possible
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solution to this problem would smooth each team’s transition metrix in such a way that no
transition remains impossible, for any team, that stands possible for another. Afterdl, if a
transition truly can happen, why deemit impossible, even if it never occurred for a given
team one year? There exist principled ways of meking this adjustment, discussed in [5],
but they are beyond the scope of the present paper.

The nunber of samples needed for modd selection with confidence offers an aternative
to the Kullback-Le bler divergence to quantify the similarity of two modds. This dterna-
tive may be easier to interpret for those untrained in modd sdection, and unfamiliar with
the K ullback-L eibler divergence. However, the unlike the K ull back-L elbler divergence, the
proposed measure is discrete, and substantially harder to cormpute.

7. Code

| provide code for my cacul aions, and sourcefor this paper, using best practices for repro-
ducibleresearch, at: https://github.comyseancarverphd/klir. Notethat the GitHub repository
mentioned beow in the acknowl edgements contains the 2011 baseba | data needed to run
my code. | have not added this |arge data set to my own GitHub repository.
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