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1 Particularly Important Material from Prelim 1

Finding Limits of Sequences

Extend Sequence to a Real Function and Apply L’Hopital’s Rule
Continuous Function Theorem
Sandwich Theorem

Algebraic Manipulation
Series

Geometric Series
Algebraic Manipulation of Series

nth Term Test for Divergence

2 Convergence Tests for Series with Non—-negative Terms

Integral Test
Idea: If the terms of our series are positive and decreasing, and look like a function that we can
integrate, we can compare our series with the corresponding improper integral.

When? The test applies to a series ), a,, if we can write the series in the form 3% | f(n) where
f(z) is a positive, decreasing function that we can integrate on the infinite interval [1,00). This test is
often more difficult to implement than others, so you might look to other tests first.

Method: If a, = f(n) (for all n) and if f a continuous, positive, decreasing function, then the series
> ne, an and the integral fl z)dz either both converge or both diverge.

Eg:

(2) annn Z 1+lnn ;

n=%t n:l

p-Series
Idea: Series of the form  ¢° ;11—,, where p is any constant are called p-series. We can always determine
if a p-series converges. They are particularly useful for the comparison tests described below.

Method: By the integral test, we can show that ) ° n%, converges for p > 1 and diverges for p < 1.
Comment: The divergent case p = 1 on the boundary is called the harmonic series.
Eg:

2, n3/2 = 47n + 1
o Uy

Direct Comparison Test
Idea: A series with positive terms must converge if its terms are all less than the corresponding terms
a different series that is convergent. On the other hand, a series must diverge if its terms are all greater
than the corresponding terms of a different series that is divergent.
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When? The method will apply to any series with non-negative terms, however knowing when this
method is best and finding the comparison series can be somewhat of an art. One clue is that the
comparison series often turn out to be a p-series. Are the terms of your series all less than the
corresponding terms of a convergent p-series? If not, are the terms of your series all greater than the
corresponding terms of a divergent p-series? If you can easily answer Yes to either question, use the
direct Comparison Test.

Method: To apply this test to a series ) an, first guess whether or not it converges.

If you guess that it converges try to find a convergent series Y b, such that (for all n), 0 < a, < b,.
If you can find one, you have proven that the original series converges.

If you guess that it diverges, try to find a divergent series 3 by, such that (for all n), 0 < b, < a,,. If
you can find one you have proven that the original series diverges.

(Note that in both cases, the original series and the comparison series must have non-negative terms).

Comment: To apply this test, you must first guess whether or not your series converges. If, after
you make a guess, you can’t find an appropriate comparison series, there can be two reasons: either you
guessed wrong, or you guessed right but (so far) you haven’t been clever enough to find a comparison
series that works. If you get stuck, try the alternative guess. (Also consider trying a different test).

Limit Comparison Test
Idea: Consider a series ) a, with non-negative terms. It must converge if its terms approach 0
faster than or equally fast as do the terms of some other convergent series (with non-negative terms).
On the other hand, it must diverge if its terms don’t approach 0, or if they approach 0 equally fast as
or slower than do the terms of a some other divergent series (with non-negative terms).

When? As with the Direct Comparison Test, the test will apply to any series with non-negative
terms, but finding appropriate comparison series can be difficult. Again, one clue is that the comparison
series often turn out to be a p-series. If in the limit n — oo, the terms of your series seem to behave
like n%,, try the Limit Comparison Test with this p-series.

Method: What does it mean to say that the terms of one series approach 0 faster than, equally fast
as, or slower than do the terms of another series? Here is a precise definition: If a,, — 0 and b, — 0
then

a, — 0 faster than b, =+ 0 means lim — =0
n—oo by,

. a
a, — 0 equally fast as b, =0 means 0< lim — < oo

n—o00 n
. a
a, — 0 slower than b, = 0 means lim — = co
n—co by,

The Limit Comparison Test works only for series with non-negative terms. Like with the Direct
Comparison Test, to apply the test to a series ) a, you must first guess whether or not the series
converges.

If you guess that it converges try to find a convergent series b, (with positive terms) such that
limy, 00 3 < 0. If you can find one, you have proven that the original series converges.

If you guess that it diverges, try to find a divergent series 3 b, such that lim,_ o, %f: > 0. If you can
find one, you have proven that the original series diverges.

Comment: The comment made for the Direct Comparison Test can be repeated for the Limit Com-
parison Test: To apply the test, you must first guess whether or not your series converges. If, after you
make a guess, you can’t find an appropriate comparison series, there can be two reasons: either you
guessed wrong, or you guessed right but (so far) you haven’t been clever enough to find an appropriate
comparison series. If you get stuck, try the alternative guess or consider a different method.



Eg: (For both Limit and Direct Comparison Tests)

@ Tpm ® Lot 0 XL 0 Yo

n
n=2 n=2

Ratio Test
Idea: Given an infinite series ) a,, the ratio of successive terms, an41/a, measures the geometric

rate of decay or growth between the terms. If the terms decay geometrically in the limit, the series
converges.

When? This test applies only to series Y a, with positive terms. Use this test if the limit of the
sequence {an41/a,} can be found easily. The Ratio Test is often the best test to use if the terms a,
are a represented as a product involving factorials (n!).

Method: To test a series ) an, (with positive terms), let p = lim, 0 2221 Then
1. > a, converges if p < 1,
2. > a, diverges if p > 1, but
3. the test is inconclusive if p = 1.

Eg:

=2 = n2"(n + 1)! et n! . nlnn
CIDM G URPIES IS B RO D D -

n=1

Root Test

Idea: Given an infinite series ) a,, the sequence defined by {/a,, also measures the geometric decay
or growth of the terms of the series. Again, if the terms decay geometrically, the series converges.

When? This test applies only to series Y a, with non-negative terms. Use this test if the limit of
the sequence { {/a,} can be found easily. The Root Test is often the best test to use if the terms a,
are represented as a product whose factors are all powers of n.

Method: To test a series ) an, (with non-negative terms), let p = lim,_, 0o {/an. Then:
1. Y an converges if p < 1,
2. Y ay diverges if p > 1, but

3. the test is inconclusive if p = 1.

Eg:

o n 2. (Inn)" 2. ()"
(a) ;::z(lnn)n, (b) ;(nn), (©) Z((nn))z.

n=1

3 Series with Both Positive and Negative Terms

Absolute Convergence
Idea: We have useful convergence tests for series with non-negative terms. Even if the series 5 a,, has
both positive and negative terms, we can still apply all our old tests (ratio, root, integral, comparison,
etc.) to the series Y |an|.

Method: If ) |a,| converges, then so does 5" ay,.
Caution! The divergence of ) |a,| does not imply the divergence of 5 a,,.

Def. A series ) a, is said to converge absolutely if its corresponding series of absolute values
> |an| converges.
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Eg: Do the following series converge absolutely?

a n+1 (0.1)» d _qyncosnm
) QMRS (B DA

n=1 n=1
= = ntan"ln
) Y (-1 VnZ+n—n), (d) > (=1) P
n=1 n=1

Conditional Convergence
Idea: A series ) a, might converge even if ) |a,| does not. (Even if the magnitudes of the terms
are not decreasing fast enough for ) |a,| to converge, cancellation between the positive and negative
terms of ) a, can cause convergence).

Def. A series ) a, is said to converge conditionally if it converges but its corresponding series of
absolute values 3 |a,| does not.

Method: To decide if a series ) a,, converges absolutely, converges conditionally or diverges, use the
following procedure: First test for absolute convergence: Does Y~ |a,| converge? If so, you conclude
that )" a, converges absolutely and you’re done. If not, there are two tests to distinguish between
conditional convergence and divergence. The Alternating Series Test (described below) will prove
convergence (which you will know is conditional convergence because you have already proven that
- lan| diverges). If the Alternating Series Test does not work, the only other method you know is the
nth term test to prove divergence. (If neither of these methods apply you’re stuck).

Alternating Series
When? Y% (-1)"*'u, = u; — uy + uz — - - - where each u,, > 0.

Convergence
Idea: There is an easy test for convergence of alternating series.

Method: Alternating Series Test (Leibniz’s Theorem) The alternating series
(o]
S

converges if all three of the following are true:

1. up > 0 for all n (the signs of the terms alternate).
2. up > upy for all n (the magnitudes of the terms decrease), and
3. up = 0 as n — oo (the terms tend to 0)

Eg: Do the following series converge absolutely, converge conditionally, or diverge?

Z 1)r+ nlnn (b) Z e Z ncos nm,

n=2 n=1

Z\/_-F\/F

Error Estimation for Alternating Series
Idea: If a series converges, we can approximate its true sum with a partial sum. For an alter-
nating series, the following theorem estimates the error involved with this approximation.

Method: (Alternating Series Estimation Theorem) If all terms wuy (with k > N) of the
alternating series
2 ()

n=1



satisfy the conditions of Leibniz’s theorem (Alternating Series Test), then for k > N,

(]
(—1)"+1un = (u1 —ug+ -4 (—1)k+1uk) + ERROR ,
n=1
where [ERROR| < |ug41]-

(In other words, if we use the kth partial sum as an approximation to the true sum, then the
error we make is less than the next term Uk41)-

Eg: For each of the following series, estimate the error involved in approximating the true sum
with the sum of the first 5 terms.

@ S0 b)Y

n=1 n=1

(c) i(—l)ntn,0<t<1, (d) i(_l)nﬂg).(:lﬁ.

n=1 n=1

Final Comment: Series with a Few Rogue Terms in the Beginning

4

Idea: Many of the tests we studied have conditions such as “all terms are non-negative,” or “terms
decrease in magnitude,” etc. You can apply these tests even if a few terms in the beginning of the
series do not satisfy the conditions. All that is necessary to prove convergence or divergence is that
(for some N), all terms ap with & > N satisfy the conditions of the test. (Note, however, that to apply
the Alternating Series Estimation Theorem to a series whose first N terms don’t satisfy its conditions
(but the rest do), we must use a partial sum s with k > N for the approximation).

Eg: Prove ) > | 2=10 diverges.
o 1

Solution: We can use the Limit Comparison Test (with 7 L as the comparison series) even

though the first 9 terms of this series are negative, because all the subsequent terms are non-negative.

Power Series

When? >0 a,(z—a)"

Idea: If this series converges, we can think of it as a function of the variable 2. (However, it can converge
for some values of 2, but not for others).

Convergence

Idea: There are three possibilities: either

1. There is some R > 0 (the radius of convergence) such that the power series Y°°  a,(z — a)"
converges absolutely for all ¢ with |z — a| < R and diverges for |z — a| > R,

2. 3o o an(z — a)™ converges for all z (in which case, we say R = oo), or

3. Y onzoan(z — a)™ converges at = = a but diverges for all # # a (in which case, we say R = 0).

Method: Test the power series for absolute convergence using the Ratio Test. (That is, test the series
Yonzo lan(z — a)"| for convergence). The test will give you the inequality p = lim, 0 ]al—zjlﬂ lz| < 1 as
the condition for absolute convergence. Solving this inequality for  gives you the interval of absolute
convergence. (And from this you can find the radius of convergence). For z outside this interval the
power series diverges (because p > 1). At the two endpoints p = 1, so the test is inconclusive. You
must test these endpoints separately for absolute convergence, conditional convergence or divergence.
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Eg: Find the radius and interval of convergence for each of the following power series. For what
values of = do they converge absolutely? converge conditionally? diverge?

) 3 n+1 0o 00
E $27j+2 MORDMC nl;n-l Z"'“" DI CHHCESICESIS

n=1 n=1 n=1

5 Taylor Series

Idea: Given a function f(z), we can construct a particular power series called the Taylor series about
some point a. The idea is that taking the first n terms of this series defines a polynomial that approximates
the function well close to a.

Definitions
Def. The Taylor series for f(z) about z = a is

© f(n)(q
Zf n'( )(x_a)n

where f(")(a) denotes the nth derivative of f evaluated at the point a.

Def. The nth order Taylor polynomial is sum of terms 0 through n of the Taylor series (in other
words, its the nth partial sum):

£ (a)

n!

(z—a)"

Pn(x):f(a)+fl(a)(:c—a)+...+

The value of polynomial at a and its first n derivatives at a agree with those of f at a.

Def. Taylor series about @ = 0 (i.e. a is 0 in the above) is called the Maclaurin series for f(z).

Computing Taylor and Maclaurin Series

Compute and evaluate derivatives

Idea: Use the formula given in the definition.
Method: Compute the derivatives f(a), f'(a), f”(a), - - -, and use the definition

©_ f(n)
TAYLOR SERIES =} f—#(x —a)".
n=0 :

To find the general formula for the Taylor series (rather than just the first few terms), you will
need to find the general formula for the derivatives. Try to find the pattern as you take the
successive derivatives.

Eg: Find the Taylor series for the following functions about = = a.
(@) €% a=2,"(b) z*¥22+1, a= -2,
Algebraic Manipulation of Frequently Used Maclaurin Series

Idea: Use algebraic manipulation to compute series from other series you know (or that you're
given).



Method: If ) a,a" is the Maclaurin Series for f(z), (and ¢ is a constant) then,
CZ ane” = ann z" is the Maclaurin Series for cf(z),
x Zan:c" = Zamc"“ is the Maclaurin Series for zf(z),
Z an(cz)" Z anc"z" is the Maclaurin Series for f(cz).

In the first two cases, I brought a constant inside the sum. (The variable z is “constant” with
respect to the summation index n, so I can bring it inside a sum just as easily as I can a number).
In the last case, I have substituted “cz” in for “z”

These series look like power series (and indeed, they are)! When I say that )" a,z" is “The
Maclaurin Series for f,” I mean that a, = Iﬂn)'ﬂl (so that the expression agrees with the defini-
tion). .

We can also add power series (and hence Taylor and Maclaurin Series) wherever they both con-
verge. Thus, if " b,2" is the Maclaurin Series for g(z), then

Zanz’" + Ebnm" = Z(an +bn)z" is the Maclaurin series for  f(z) + g(z).

Eg: Find the Taylor series for the following functions about z = a.
%

(a) 2?In(1+3z), a=0, (b) @=5)" a=0, (c) e+e %, a=0, (d) 5cos(mrz),a=0.
Differentiation & Integration of Power Series (or Taylor or Maclaurin Series)

Idea: We can differentiate and integrate a power series (and hence a Taylor or a Maclaurin

series) term—by—term inside its interval of convergence. The new series will have the same interval

of convergence as the original (except that it may have different convergence properties at the

endpoints of this interval).

Method: Within the interval of absolute convergence, (but not at the endpoints)

%(iaJa:—a)”):i(%a x—a) Znanw—a =1,

n=0 n=0

Method: Within the interval of absolute convergence, (but not at the endpoints)

/(;an(x—a)n> d$:§</a (z—a)"d > ni::l Ci:lz_a)nﬂ

Eg: Differentiate and integrate the following power series: What series do you get? What are
their intervals of convergence?

2 4 oo on
(a) cosx:l—%+i_l_.,,, (b) ezz:Z T
’ n=1

_ Y
n=1
Frequently Used Maclaurin Series That You Should Know
Idea: The Maclaurin series for the following functions are often needed for applying the above
techniques: (see page 696 and memorize them!):
1
1-2’

e”,cosz,sinz,In(1 + z), (14 z)™

The series for (14 z)™ is called the binomial series.

The series for In(142) can be easily derived by integrating the series for 7—. The other Maclaurin
series listed in the table on page 696 that I haven’t listed above (that is, the series for —— 1+$ , In(4£2),
and for tan~! z) can also all be derived easily from the others. How?
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Error Estimation and Convergence of Taylor Series

Taylor’s Theorem
Idea: This theorem gives us an expression for the error involved if we approximate a function with
a Taylor polynomial.

Taylor’s Theorem: If f and its first n derivatives are continuous at all points between z and a
(including at z and at a) then there is some value ¢ between z and a such that

f(n+1) (C) n+1

flz) = Pn(fb’)"‘mw )
=1Py(2) + Ra(z)-
Thus
(n+1)(,
ERROR = R,(z) = ]ZTLTI()')(:B Argyr

Method: Far away from a, the Taylor polynomial is no longer a good approximation to f. If you
want a bound on the error that doesn’t depend upon the variable , the bound will only be valid in
some interval close to a, say, |¢ — a|] < §, (equivalently,a — 6 < z < a + d). (Sometimes the problem
gives you an interval and asks you to estimate the error — that is to find a bound which the error is
less than on the whole interval). Other problems specify a bound and ask you to find an interval on
which the error is less than the bound).

The point ¢ changes as « changes, but you don’t know what the point c is anyway. Thus to find an
explicit bound on the error using Taylor’s Theorem, you must have a bound on the n + 1st derivative.
That is, you need to find a bound M such that f("+1)(z) < M for all  in the specified interval. If the
specified interval is [z —a| < d, and the bound on the nth derivative (in that interval) is f("+1)(z) < M,
Taylor’s Theorem says:

5n+1

(n+1)
|[ERROR| = lf(—(c)lu P .

n + 1)! ~ (n+1)!

Convergence of Taylor Series
Idea: Does the Taylor series converge? (More precisely, does it have a positive radius of convergence?)
If so, does the Taylor series converge to the original function? The answer to these questions depends
on the function. The counterexample on page 677 is probably the only example of a function that you
will find in Thomas and Finney for which the the Taylor series converges, but does not converge to the
function.

Applying the Alternating Series Estimation Theorem to Taylor Polynomials
Idea: This theorem can also be used to estimate the error involved with approximating a function
in a specified interval by a Taylor polynomial. (Or to find an interval on which the error satisfies a
certain bound).

When? The same conditions must hold for a power series that do for a constant series: the signs of
the terms in the Taylor Series must alternate and their magnitudes must decrease and tend to 0. Be
sure that these conditions holds for all z in the specified interval. Ask yourself: What if z is negative?
(You can just assume that the Taylor series converges to the function in its interval of convergence,
even though it’s not always true).

Eg: Go through problems 8.10.19-8.10.30.
Eg: Estimate the error in the following approximations for |z| < 0.5:
3

(a) \/1_+_:c~1+<g>, (b) cosm~1—%.



